Spaces:
Running
Running
from onnx_modules.V230_OnnxInference import OnnxInferenceSession | |
import numpy as np | |
import torch | |
from scipy.io.wavfile import write | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
import utils | |
import commons | |
hps = utils.get_hparams_from_file('onnx/BangDreamApi.json') | |
device = 'cpu' | |
Session = OnnxInferenceSession( | |
{ | |
"enc" : "onnx/BangDreamApi/BangDreamApi_enc_p.onnx", | |
"emb_g" : "onnx/BangDreamApi/BangDreamApi_emb.onnx", | |
"dp" : "onnx/BangDreamApi/BangDreamApi_dp.onnx", | |
"sdp" : "onnx/BangDreamApi/BangDreamApi_sdp.onnx", | |
"flow" : "onnx/BangDreamApi/BangDreamApi_flow.onnx", | |
"dec" : "onnx/BangDreamApi/BangDreamApi_dec.onnx" | |
}, | |
Providers = ["CPUExecutionProvider"] | |
) | |
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): | |
style_text = None if style_text == "" else style_text | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if True: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert_ori = get_bert( | |
norm_text, word2ph, language_str, device, style_text, style_weight | |
) | |
del word2ph | |
assert bert_ori.shape[-1] == len(phone), phone | |
if language_str == "ZH": | |
bert = bert_ori | |
ja_bert = torch.randn(1024, len(phone)) | |
en_bert = torch.randn(1024, len(phone)) | |
elif language_str == "JP": | |
bert = torch.randn(1024, len(phone)) | |
ja_bert = bert_ori | |
en_bert = torch.randn(1024, len(phone)) | |
elif language_str == "EN": | |
bert = torch.randn(1024, len(phone)) | |
ja_bert = torch.randn(1024, len(phone)) | |
en_bert = bert_ori | |
else: | |
raise ValueError("language_str should be ZH, JP or EN") | |
assert bert.shape[-1] == len( | |
phone | |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, ja_bert, en_bert, phone, tone, language | |
def infer( | |
text, | |
sid, | |
style_text=None, | |
style_weight=0.7, | |
sdp_ratio=0.5, | |
noise_scale=0.6, | |
noise_scale_w=0.667, | |
length_scale=1, | |
): | |
language= 'JP' if is_japanese(text) else 'ZH' | |
bert, ja_bert, en_bert, phones, tone, language = get_text( | |
text, | |
language, | |
hps, | |
device, | |
style_text=style_text, | |
style_weight=style_weight, | |
) | |
with torch.no_grad(): | |
x_tst = phones.unsqueeze(0).to(device).numpy() | |
language = np.zeros_like(x_tst) | |
tone = np.zeros_like(x_tst) | |
bert = bert.to(device).transpose(0, 1).numpy() | |
ja_bert = ja_bert.to(device).transpose(0, 1).numpy() | |
en_bert = en_bert.to(device).transpose(0, 1).numpy() | |
del phones | |
sid = np.array([hps.spk2id[sid]]) | |
audio = Session( | |
x_tst, | |
tone, | |
language, | |
bert, | |
ja_bert, | |
en_bert, | |
sid, | |
seed=114514, | |
seq_noise_scale=noise_scale_w, | |
sdp_noise_scale=noise_scale, | |
length_scale=length_scale, | |
sdp_ratio=sdp_ratio, | |
) | |
del x_tst, tone, language, bert, ja_bert, en_bert, sid | |
write('temp.wav', 44100, audio) | |
def is_japanese(string): | |
for ch in string: | |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF: | |
return True | |
return False | |
if __name__ == "__main__": | |
infer("你好,我是说的道理", "パレオ") | |
''' | |
from onnx_modules.V230_OnnxInference import OnnxInferenceSession | |
import numpy as np | |
import torch | |
from scipy.io.wavfile import write | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
import utils | |
import commons | |
hps = utils.get_hparams_from_file('onnx/BangDreamApi.json') | |
device = 'cpu' | |
Session = OnnxInferenceSession( | |
{ | |
"enc" : "onnx/BangDreamApi/BangDreamApi_enc_p.onnx", | |
"emb_g" : "onnx/BangDreamApi/BangDreamApi_emb.onnx", | |
"dp" : "onnx/BangDreamApi/BangDreamApi_dp.onnx", | |
"sdp" : "onnx/BangDreamApi/BangDreamApi_sdp.onnx", | |
"flow" : "onnx/BangDreamApi/BangDreamApi_flow.onnx", | |
"dec" : "onnx/BangDreamApi/BangDreamApi_dec.onnx" | |
}, | |
Providers = ["CPUExecutionProvider"] | |
) | |
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): | |
style_text = None if style_text == "" else style_text | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if True: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert_ori = get_bert( | |
norm_text, word2ph, language_str, device, style_text, style_weight | |
) | |
del word2ph | |
assert bert_ori.shape[-1] == len(phone), phone | |
if language_str == "ZH": | |
bert = bert_ori | |
ja_bert = torch.randn(1024, len(phone)) | |
en_bert = torch.randn(1024, len(phone)) | |
elif language_str == "JP": | |
bert = torch.randn(1024, len(phone)) | |
ja_bert = bert_ori | |
en_bert = torch.randn(1024, len(phone)) | |
elif language_str == "EN": | |
bert = torch.randn(1024, len(phone)) | |
ja_bert = torch.randn(1024, len(phone)) | |
en_bert = bert_ori | |
else: | |
raise ValueError("language_str should be ZH, JP or EN") | |
assert bert.shape[-1] == len( | |
phone | |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, ja_bert, en_bert, phone, tone, language | |
def infer( | |
text, | |
sid, | |
style_text=None, | |
style_weight=0.7, | |
): | |
language= 'JP' if is_japanese(text) else 'ZH' | |
bert, ja_bert, en_bert, phones, tone, language = get_text( | |
text, | |
language, | |
hps, | |
"cpu", | |
style_text=style_text, | |
style_weight=style_weight, | |
) | |
with torch.no_grad(): | |
x_tst = phones.unsqueeze(0).to(device).numpy() | |
tone = tone.to(device).unsqueeze(0).numpy() | |
bert = bert.to(device).transpose(0, 1).numpy() | |
ja_bert = ja_bert.to(device).transpose(0, 1).numpy() | |
en_bert = en_bert.to(device).transpose(0, 1).numpy() | |
del phones | |
language = np.zeros_like(x_tst) | |
tone = np.zeros_like(x_tst) | |
print(bert) | |
print(tone) | |
print(ja_bert) | |
print(language) | |
sid = np.array([0]) | |
audio = Session( | |
x_tst, | |
tone, | |
language, | |
bert, | |
ja_bert, | |
en_bert, | |
sid | |
) | |
write('temp.wav', 44100, audio) | |
def is_japanese(string): | |
for ch in string: | |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF: | |
return True | |
return False | |
if __name__ == "__main__": | |
infer("你好,我是说的道理", "香澄") | |
''' |