Spaces:
Running
Running
import argparse | |
import os | |
from pathlib import Path | |
import logging | |
import re_matching | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
logging.basicConfig( | |
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
import librosa | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.utils.data import Dataset | |
from torch.utils.data import DataLoader, Dataset | |
from tqdm import tqdm | |
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature | |
import gradio as gr | |
import utils | |
from config import config | |
import torch | |
import commons | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
import utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
import sys | |
net_g = None | |
''' | |
device = ( | |
"cuda:0" | |
if torch.cuda.is_available() | |
else ( | |
"mps" | |
if sys.platform == "darwin" and torch.backends.mps.is_available() | |
else "cpu" | |
) | |
) | |
''' | |
device = "cpu" | |
BandList = { | |
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], | |
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], | |
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], | |
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], | |
"Roselia":["友希那","紗夜","リサ","燐子","あこ"], | |
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], | |
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"], | |
"MyGo":["燈","愛音","そよ","立希","楽奈"], | |
"AveMujica":["祥子","睦","海鈴","にゃむ","初華"], | |
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"], | |
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"], | |
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"], | |
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"] | |
} | |
def get_net_g(model_path: str, device: str, hps): | |
# 当前版本模型 net_g | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) | |
return net_g | |
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): | |
style_text = None if style_text == "" else style_text | |
# 在此处实现当前版本的get_text | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert = get_bert(norm_text, word2ph, language_str, device, style_text, style_weight) | |
del word2ph | |
assert bert.shape[-1] == len( | |
phone | |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, phone, tone, language | |
def infer( | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
sid, | |
emotion, | |
reference_audio=None, | |
skip_start=False, | |
skip_end=False, | |
style_text=None, | |
style_weight=0.7, | |
): | |
language = "JP" | |
if isinstance(reference_audio, np.ndarray): | |
emo = get_clap_audio_feature(reference_audio, device) | |
else: | |
emo = get_clap_text_feature(emotion, device) | |
emo = torch.squeeze(emo, dim=1) | |
bert, phones, tones, lang_ids = get_text( | |
text, | |
language, | |
hps, | |
device, | |
style_text=style_text, | |
style_weight=style_weight, | |
) | |
if skip_start: | |
phones = phones[3:] | |
tones = tones[3:] | |
lang_ids = lang_ids[3:] | |
bert = bert[:, 3:] | |
if skip_end: | |
phones = phones[:-2] | |
tones = tones[:-2] | |
lang_ids = lang_ids[:-2] | |
bert = bert[:, :-2] | |
with torch.no_grad(): | |
x_tst = phones.to(device).unsqueeze(0) | |
tones = tones.to(device).unsqueeze(0) | |
lang_ids = lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
emo = emo.to(device).unsqueeze(0) | |
del phones | |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
print(text) | |
audio = ( | |
net_g.infer( | |
x_tst, | |
x_tst_lengths, | |
speakers, | |
tones, | |
lang_ids, | |
bert, | |
emo, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) | |
del ( | |
x_tst, | |
tones, | |
lang_ids, | |
bert, | |
x_tst_lengths, | |
speakers, | |
emo, | |
) # , emo | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio)) | |
def loadmodel(model): | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) | |
return "success" | |
if __name__ == "__main__": | |
modelPaths = [] | |
for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'): | |
for filename in filenames: | |
modelPaths.append(os.path.join(dirpath, filename)) | |
hps = utils.get_hparams_from_file('Data/BangDream//config.json') | |
net_g = get_net_g( | |
model_path=modelPaths[-1], device=device, hps=hps | |
) | |
speaker_ids = hps.data.spk2id | |
speakers = list(speaker_ids.keys()) | |
with gr.Blocks() as app: | |
for band in BandList: | |
with gr.TabItem(band): | |
for name in BandList[band]: | |
with gr.TabItem(name): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">' | |
'</div>' | |
) | |
length_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节" | |
) | |
emotion = gr.Textbox( | |
label="情感标注文本t", | |
value = 'なんではるひかげやったの?!!' | |
) | |
style_weight = gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.01, label="感情比重" | |
) | |
with gr.Accordion(label="参数设定", open=False): | |
sdp_ratio = gr.Slider( | |
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比" | |
) | |
noise_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节" | |
) | |
noise_scale_w = gr.Slider( | |
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度" | |
) | |
speaker = gr.Dropdown( | |
choices=speakers, value=name, label="说话人" | |
) | |
skip_start = gr.Checkbox(label="跳过开头") | |
skip_end = gr.Checkbox(label="跳过结尾") | |
with gr.Accordion(label="切换模型", open=False): | |
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value") | |
btnMod = gr.Button("载入模型") | |
statusa = gr.TextArea() | |
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa]) | |
with gr.Column(): | |
text = gr.TextArea( | |
label="输入纯日语", | |
placeholder="输入纯日语", | |
value="なんではるひかげやったの?!!", | |
) | |
reference_audio = gr.Audio(label="情感参考音频)", type="filepath") | |
btn = gr.Button("点击生成", variant="primary") | |
audio_output = gr.Audio(label="Output Audio") | |
btn.click( | |
infer, | |
inputs=[ | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
speaker, | |
emotion, | |
reference_audio, | |
skip_start, | |
skip_end, | |
emotion, | |
style_weight, | |
], | |
outputs=[audio_output], | |
) | |
print("推理页面已开启!") | |
app.launch(share=True) |