Spaces:
Running
Running
# flake8: noqa: E402 | |
import logging | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
logging.basicConfig( | |
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
import datetime | |
import numpy as np | |
import torch | |
from ebooklib import epub | |
import PyPDF2 | |
from PyPDF2 import PdfReader | |
import zipfile | |
import shutil | |
import sys, os | |
import json | |
from bs4 import BeautifulSoup | |
import argparse | |
import commons | |
import utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
import gradio as gr | |
import webbrowser | |
import re | |
from scipy.io.wavfile import write | |
net_g = None | |
BandList = { | |
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], | |
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], | |
"HelloHappyWorld":["こころ","ミッシェル","薫","花音","はぐみ"], | |
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], | |
"Roselia":["友希那","紗夜","リサ","燐子","あこ"], | |
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], | |
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"], | |
"MyGo&AveMujica(Part)":["燈","愛音","そよ","立希","楽奈","祥子","睦","海鈴"], | |
} | |
if sys.platform == "darwin" and torch.backends.mps.is_available(): | |
device = "mps" | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
else: | |
device = "cuda" | |
def is_japanese(string): | |
for ch in string: | |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF: | |
return True | |
return False | |
def extrac(text): | |
text = re.sub("<[^>]*>","",text) | |
result_list = re.split(r'\n', text) | |
final_list = [] | |
for i in result_list: | |
i = i.replace('\n','').replace(' ','') | |
#Current length of single sentence: 20 | |
if len(i)>1: | |
if len(i) > 20: | |
try: | |
cur_list = re.split(r'。|!', i) | |
for i in cur_list: | |
if len(i)>1: | |
final_list.append(i+'。') | |
except: | |
pass | |
else: | |
final_list.append(i) | |
''' | |
final_list.append(i) | |
''' | |
final_list = [x for x in final_list if x != ''] | |
return final_list | |
def get_text(text, language_str, hps): | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert = get_bert(norm_text, word2ph, language_str, device) | |
del word2ph | |
assert bert.shape[-1] == len(phone), phone | |
if language_str == "ZH": | |
bert = bert | |
ja_bert = torch.zeros(768, len(phone)) | |
elif language_str == "JA": | |
ja_bert = bert | |
bert = torch.zeros(1024, len(phone)) | |
else: | |
bert = torch.zeros(1024, len(phone)) | |
ja_bert = torch.zeros(768, len(phone)) | |
assert bert.shape[-1] == len( | |
phone | |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, ja_bert, phone, tone, language | |
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language): | |
global net_g | |
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps) | |
with torch.no_grad(): | |
x_tst = phones.to(device).unsqueeze(0) | |
tones = tones.to(device).unsqueeze(0) | |
lang_ids = lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
ja_bert = ja_bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
del phones | |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
audio = ( | |
net_g.infer( | |
x_tst, | |
x_tst_lengths, | |
speakers, | |
tones, | |
lang_ids, | |
bert, | |
ja_bert, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) | |
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers | |
return audio | |
def tts_fn( | |
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,LongSentence | |
): | |
if not LongSentence: | |
with torch.no_grad(): | |
audio = infer( | |
text, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=speaker, | |
language= "JP" if is_japanese(text) else "ZH", | |
) | |
torch.cuda.empty_cache() | |
return (hps.data.sampling_rate, audio) | |
else: | |
audiopath = 'voice.wav' | |
a = ['【','[','(','('] | |
b = ['】',']',')',')'] | |
for i in a: | |
text = text.replace(i,'<') | |
for i in b: | |
text = text.replace(i,'>') | |
final_list = extrac(text.replace('“','').replace('”','')) | |
audio_fin = [] | |
for sentence in final_list: | |
with torch.no_grad(): | |
audio = infer( | |
sentence, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=speaker, | |
language= "JP" if is_japanese(text) else "ZH", | |
) | |
audio_fin.append(audio) | |
return (hps.data.sampling_rate, np.concatenate(audio_fin)) | |
def split_into_sentences(text): | |
"""将文本分割为句子,基于中文的标点符号""" | |
sentences = re.split(r'(?<=[。!?…\n])', text) | |
return [sentence.strip() for sentence in sentences if sentence] | |
def seconds_to_ass_time(seconds): | |
"""将秒数转换为ASS时间格式""" | |
hours = int(seconds / 3600) | |
minutes = int((seconds % 3600) / 60) | |
seconds = int(seconds) % 60 | |
milliseconds = int((seconds - int(seconds)) * 1000) | |
return "{:01d}:{:02d}:{:02d}.{:02d}".format(hours, minutes, seconds, int(milliseconds / 10)) | |
def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime): | |
audio_fin = [] | |
ass_entries = [] | |
start_time = 0 | |
ass_header = """[Script Info] | |
; Script generated by OpenAI Assistant | |
Title: Audiobook | |
ScriptType: v4.00+ | |
WrapStyle: 0 | |
PlayResX: 640 | |
PlayResY: 360 | |
ScaledBorderAndShadow: yes | |
[V4+ Styles] | |
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding | |
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1 | |
[Events] | |
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text | |
""" | |
for sentence in group: | |
try: | |
print(sentence) | |
FakeSpeaker = sentence.split("|")[0] | |
print(FakeSpeaker) | |
SpeakersList = re.split('\n', spealerList) | |
if FakeSpeaker in list(hps.data.spk2id.keys()): | |
speaker = FakeSpeaker | |
for i in SpeakersList: | |
if FakeSpeaker == i.split("|")[1]: | |
speaker = i.split("|")[0] | |
speaker_ids = hps.data.spk2id | |
_, audio = tts_fn(sentence.split("|")[-1], speaker=speaker, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, LongSentence=True) | |
silence_frames = int(silenceTime * 44010) | |
silence_data = np.zeros((silence_frames,), dtype=audio.dtype) | |
audio_fin.append(audio) | |
audio_fin.append(silence_data) | |
duration = len(audio) / sampling_rate | |
end_time = start_time + duration + silenceTime | |
ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":"))) | |
start_time = end_time | |
except: | |
pass | |
wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav') | |
ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass') | |
write(wav_filename, sampling_rate, np.concatenate(audio_fin)) | |
with open(ass_filename, 'w', encoding='utf-8') as f: | |
f.write(ass_header + '\n'.join(ass_entries)) | |
return (hps.data.sampling_rate, np.concatenate(audio_fin)) | |
def extract_text_from_epub(file_path): | |
book = epub.read_epub(file_path) | |
content = [] | |
for item in book.items: | |
if isinstance(item, epub.EpubHtml): | |
soup = BeautifulSoup(item.content, 'html.parser') | |
content.append(soup.get_text()) | |
return '\n'.join(content) | |
def extract_text_from_pdf(file_path): | |
with open(file_path, 'rb') as file: | |
reader = PdfReader(file) | |
content = [page.extract_text() for page in reader.pages] | |
return '\n'.join(content) | |
def extract_text_from_game(data): | |
current_content = [] | |
def _extract(data, current_data=None): | |
nonlocal current_content | |
if current_data is None: | |
current_data = {} | |
if isinstance(data, dict): | |
if 'windowDisplayName' in data: | |
current_data['windowDisplayName'] = data['windowDisplayName'] | |
if 'body' in data: | |
current_data['body'] = data['body'].replace('\n', '') | |
if 'voiceId' in data: | |
current_data['voiceId'] = data['voiceId'] | |
valid_data = all(current_data.get(k) for k in ['windowDisplayName', 'body', 'voiceId']) | |
valid_displayname = "・" not in current_data.get('windowDisplayName', "") | |
valid_body = bool(re.sub(r'[^\w]', '', current_data.get('body', ""))) | |
if valid_data and valid_displayname and valid_body: | |
current_content.append(f"{current_data['windowDisplayName']}|{current_data['body']}") | |
for key in data: | |
_extract(data[key], dict(current_data)) | |
elif isinstance(data, list): | |
for item in data: | |
_extract(item, dict(current_data)) | |
_extract(data) | |
return '\n'.join(current_content) | |
def extract_text_from_file(inputFile): | |
file_extension = os.path.splitext(inputFile)[1].lower() | |
if file_extension == ".epub": | |
return extract_text_from_epub(inputFile) | |
elif file_extension == ".pdf": | |
return extract_text_from_pdf(inputFile) | |
elif file_extension == ".txt": | |
with open(inputFile, 'r', encoding='utf-8') as f: | |
return f.read() | |
elif file_extension == ".asset": | |
with open(inputFile, 'r', encoding='utf-8') as f: | |
content = json.load(f) | |
return extract_text_from_game(content) | |
else: | |
raise ValueError(f"Unsupported file format: {file_extension}") | |
def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime): | |
directory_path = "books" | |
output_path = "books/audiobook_part_1.wav" | |
if os.path.exists(directory_path): | |
shutil.rmtree(directory_path) | |
os.makedirs(directory_path) | |
text = extract_text_from_file(inputFile.name) | |
sentences = split_into_sentences(text) | |
GROUP_SIZE = groupsize | |
for i in range(0, len(sentences), GROUP_SIZE): | |
group = sentences[i:i+GROUP_SIZE] | |
if spealerList == "": | |
spealerList = "无" | |
result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime) | |
if not torch.cuda.is_available(): | |
return result | |
return result | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-m", "--model", default="./logs/BangDream/G_45000.pth", help="path of your model" | |
) | |
parser.add_argument( | |
"-c", | |
"--config", | |
default="./logs/BangDream/config.json", | |
help="path of your config file", | |
) | |
parser.add_argument( | |
"--share", default=True, help="make link public", action="store_true" | |
) | |
parser.add_argument( | |
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log" | |
) | |
args = parser.parse_args() | |
if args.debug: | |
logger.info("Enable DEBUG-LEVEL log") | |
logging.basicConfig(level=logging.DEBUG) | |
hps = utils.get_hparams_from_file(args.config) | |
device = ( | |
"cuda:0" | |
if torch.cuda.is_available() | |
else ( | |
"mps" | |
if sys.platform == "darwin" and torch.backends.mps.is_available() | |
else "cpu" | |
) | |
) | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True) | |
speaker_ids = hps.data.spk2id | |
speakers = list(speaker_ids.keys()) | |
languages = ["ZH", "JP"] | |
examples = [ | |
["filelist/Scenarioband6-018.asset", 500, "つくし", "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子", "扩展功能"], | |
] | |
with gr.Blocks() as app: | |
gr.Markdown( | |
'# Bang Dream全员TTS,使用本模型请严格遵守法律法规!\n发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!' | |
) | |
for band in BandList: | |
with gr.TabItem(band): | |
for name in BandList[band]: | |
with gr.TabItem(name): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' | |
'</div>' | |
) | |
LongSentence = gr.Checkbox(value=True, label="Generate LongSentence") | |
with gr.Column(): | |
text = gr.TextArea( | |
label="输入纯日语或者中文", | |
placeholder="输入纯日语或者中文", | |
value="純粋な日本語または中国語を入力してください。", | |
) | |
btn = gr.Button("点击生成", variant="primary") | |
audio_output = gr.Audio(label="Output Audio") | |
with gr.Accordion(label="TTS设定", open=False): | |
sdp_ratio = gr.Slider( | |
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比" | |
) | |
noise_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节" | |
) | |
noise_scale_w = gr.Slider( | |
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度" | |
) | |
length_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度" | |
) | |
speaker = gr.Dropdown( | |
choices=speakers, value=name, label="说话人" | |
) | |
btn.click( | |
tts_fn, | |
inputs=[ | |
text, | |
speaker, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
LongSentence, | |
], | |
outputs=[audio_output], | |
) | |
for i in examples: | |
with gr.Tab(i[-1]): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
f"从 <a href='filelists'>filelists文件夹</a> 下载示例\n游戏脚本见<a href='https://bestdori.com/tool/explorer/asset/cn/scenario'>bestdori</a>" | |
) | |
inputFile = gr.inputs.File(label="上传游戏脚本(日文)、中文脚本(需设置角色对应关系)、自制文、(需设置角色对应关系") | |
groupSize = gr.Slider( | |
minimum=10, maximum=1000,value = i[1], step=1, label="当个音频文件包含的最大字数" | |
) | |
silenceTime = gr.Slider( | |
minimum=0, maximum=1, value=0.5, step=0.1, label="句子的间隔" | |
) | |
spealerList = gr.TextArea( | |
label="角色对应表", | |
placeholder="左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList1}|{SeakerInUploadText1}\n{ChoseSpeakerFromConfigList2}|{SeakerInUploadText2}\n{ChoseSpeakerFromConfigList3}|{SeakerInUploadText3}\n", | |
value = i[3], | |
) | |
speaker = gr.Dropdown( | |
choices=speakers, value = i[2], label="角色清单" | |
) | |
with gr.Column(): | |
sdp_ratio = gr.Slider( | |
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比" | |
) | |
noise_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节" | |
) | |
noise_scale_w = gr.Slider( | |
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度" | |
) | |
length_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度" | |
) | |
LastAudioOutput = gr.Audio(label="当用cuda在本地运行时才能在book文件夹下浏览全部合成内容") | |
btn2 = gr.Button("点击生成", variant="primary") | |
btn2.click( | |
audiobook, | |
inputs=[ | |
inputFile, | |
groupSize, | |
speaker, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
spealerList, | |
silenceTime | |
], | |
outputs=[LastAudioOutput], | |
) | |
app.launch() | |