Update app.py
Browse files
app.py
CHANGED
|
@@ -6,35 +6,54 @@ from simple_salesforce import Salesforce
|
|
| 6 |
from transformers import pipeline
|
| 7 |
from utils import fetch_salesforce_data, detect_anomalies, generate_pdf_report
|
| 8 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Streamlit app configuration
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Cache Salesforce connection
|
| 14 |
@st.cache_resource
|
| 15 |
def init_salesforce():
|
|
|
|
| 16 |
try:
|
| 17 |
-
|
| 18 |
username=os.getenv("SF_USERNAME", st.secrets.get("sf_username")),
|
| 19 |
password=os.getenv("SF_PASSWORD", st.secrets.get("sf_password")),
|
| 20 |
security_token=os.getenv("SF_SECURITY_TOKEN", st.secrets.get("sf_security_token"))
|
| 21 |
)
|
|
|
|
|
|
|
| 22 |
except Exception as e:
|
| 23 |
-
|
|
|
|
| 24 |
return None
|
| 25 |
|
| 26 |
# Cache Hugging Face model
|
| 27 |
@st.cache_resource
|
| 28 |
def init_anomaly_detector():
|
|
|
|
| 29 |
try:
|
| 30 |
-
|
|
|
|
| 31 |
"text-classification",
|
| 32 |
-
model="
|
| 33 |
-
tokenizer="
|
| 34 |
clean_up_tokenization_spaces=True
|
| 35 |
)
|
|
|
|
|
|
|
| 36 |
except Exception as e:
|
| 37 |
-
|
|
|
|
| 38 |
return None
|
| 39 |
|
| 40 |
# Initialize connections
|
|
@@ -42,24 +61,33 @@ sf = init_salesforce()
|
|
| 42 |
anomaly_detector = init_anomaly_detector()
|
| 43 |
|
| 44 |
# Cache data fetching
|
| 45 |
-
@st.cache_data(ttl=10)
|
| 46 |
def get_filtered_data(lab_site, equipment_type, date_start, date_end):
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def main():
|
|
|
|
| 61 |
if sf is None or anomaly_detector is None:
|
| 62 |
-
st.error("
|
|
|
|
| 63 |
return
|
| 64 |
|
| 65 |
st.title("Multi-Device LabOps Dashboard")
|
|
@@ -73,9 +101,9 @@ def main():
|
|
| 73 |
|
| 74 |
date_range = st.date_input("Date Range", [datetime.now() - timedelta(days=7), datetime.now()])
|
| 75 |
|
| 76 |
-
# Validate date range
|
| 77 |
if len(date_range) != 2:
|
| 78 |
st.warning("Please select a valid date range.")
|
|
|
|
| 79 |
return
|
| 80 |
date_start, date_end = date_range
|
| 81 |
|
|
@@ -84,6 +112,7 @@ def main():
|
|
| 84 |
data = get_filtered_data(lab_site, equipment_type, date_start, date_end)
|
| 85 |
if not data:
|
| 86 |
st.warning("No data available for the selected filters.")
|
|
|
|
| 87 |
return
|
| 88 |
|
| 89 |
df = pd.DataFrame(data)
|
|
@@ -156,8 +185,15 @@ def main():
|
|
| 156 |
pdf_file = generate_pdf_report(df, lab_site, equipment_type, [date_start, date_end])
|
| 157 |
with open(pdf_file, "rb") as f:
|
| 158 |
st.download_button("Download PDF", f, file_name="LabOps_Report.pdf", mime="application/pdf")
|
|
|
|
| 159 |
except Exception as e:
|
| 160 |
st.error(f"Failed to generate PDF: {e}")
|
|
|
|
| 161 |
|
| 162 |
if __name__ == "__main__":
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from transformers import pipeline
|
| 7 |
from utils import fetch_salesforce_data, detect_anomalies, generate_pdf_report
|
| 8 |
import os
|
| 9 |
+
import logging
|
| 10 |
+
|
| 11 |
+
# Configure logging
|
| 12 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
# Streamlit app configuration
|
| 16 |
+
try:
|
| 17 |
+
st.set_page_config(page_title="LabOps Dashboard", layout="wide")
|
| 18 |
+
logger.info("Streamlit page configuration set successfully.")
|
| 19 |
+
except Exception as e:
|
| 20 |
+
logger.error(f"Failed to set Streamlit page configuration: {e}")
|
| 21 |
+
raise
|
| 22 |
|
| 23 |
# Cache Salesforce connection
|
| 24 |
@st.cache_resource
|
| 25 |
def init_salesforce():
|
| 26 |
+
logger.info("Initializing Salesforce connection...")
|
| 27 |
try:
|
| 28 |
+
sf = Salesforce(
|
| 29 |
username=os.getenv("SF_USERNAME", st.secrets.get("sf_username")),
|
| 30 |
password=os.getenv("SF_PASSWORD", st.secrets.get("sf_password")),
|
| 31 |
security_token=os.getenv("SF_SECURITY_TOKEN", st.secrets.get("sf_security_token"))
|
| 32 |
)
|
| 33 |
+
logger.info("Salesforce connection initialized successfully.")
|
| 34 |
+
return sf
|
| 35 |
except Exception as e:
|
| 36 |
+
logger.error(f"Failed to initialize Salesforce: {e}")
|
| 37 |
+
st.error(f"Cannot connect to Salesforce: {e}")
|
| 38 |
return None
|
| 39 |
|
| 40 |
# Cache Hugging Face model
|
| 41 |
@st.cache_resource
|
| 42 |
def init_anomaly_detector():
|
| 43 |
+
logger.info("Initializing anomaly detector...")
|
| 44 |
try:
|
| 45 |
+
# Use lighter model for Hugging Face Spaces
|
| 46 |
+
detector = pipeline(
|
| 47 |
"text-classification",
|
| 48 |
+
model="prajjwal1/bert-tiny",
|
| 49 |
+
tokenizer="prajjwal1/bert-tiny",
|
| 50 |
clean_up_tokenization_spaces=True
|
| 51 |
)
|
| 52 |
+
logger.info("Anomaly detector initialized successfully.")
|
| 53 |
+
return detector
|
| 54 |
except Exception as e:
|
| 55 |
+
logger.error(f"Failed to initialize anomaly detector: {e}")
|
| 56 |
+
st.error(f"Cannot initialize anomaly detector: {e}")
|
| 57 |
return None
|
| 58 |
|
| 59 |
# Initialize connections
|
|
|
|
| 61 |
anomaly_detector = init_anomaly_detector()
|
| 62 |
|
| 63 |
# Cache data fetching
|
| 64 |
+
@st.cache_data(ttl=10)
|
| 65 |
def get_filtered_data(lab_site, equipment_type, date_start, date_end):
|
| 66 |
+
logger.info(f"Fetching data for lab: {lab_site}, equipment: {equipment_type}, date range: {date_start} to {date_end}")
|
| 67 |
+
try:
|
| 68 |
+
query = f"""
|
| 69 |
+
SELECT Equipment__c, Log_Timestamp__c, Status__c, Usage_Count__c, Lab__c, Equipment_Type__c
|
| 70 |
+
FROM SmartLog__c
|
| 71 |
+
WHERE Log_Timestamp__c >= {date_start.strftime('%Y-%m-%d')}
|
| 72 |
+
AND Log_Timestamp__c <= {date_end.strftime('%Y-%m-%d')}
|
| 73 |
+
"""
|
| 74 |
+
if lab_site != "All":
|
| 75 |
+
query += f" AND Lab__c = '{lab_site}'"
|
| 76 |
+
if equipment_type != "All":
|
| 77 |
+
query += f" AND Equipment_Type__c = '{equipment_type}'"
|
| 78 |
+
query += " LIMIT 100"
|
| 79 |
+
data = fetch_salesforce_data(sf, query)
|
| 80 |
+
logger.info(f"Fetched {len(data)} records from Salesforce.")
|
| 81 |
+
return data
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Failed to fetch data: {e}")
|
| 84 |
+
return []
|
| 85 |
|
| 86 |
def main():
|
| 87 |
+
logger.info("Starting main application...")
|
| 88 |
if sf is None or anomaly_detector is None:
|
| 89 |
+
st.error("Application cannot start due to initialization failures. Check logs for details.")
|
| 90 |
+
logger.error("Application initialization failed: Salesforce or anomaly detector not available.")
|
| 91 |
return
|
| 92 |
|
| 93 |
st.title("Multi-Device LabOps Dashboard")
|
|
|
|
| 101 |
|
| 102 |
date_range = st.date_input("Date Range", [datetime.now() - timedelta(days=7), datetime.now()])
|
| 103 |
|
|
|
|
| 104 |
if len(date_range) != 2:
|
| 105 |
st.warning("Please select a valid date range.")
|
| 106 |
+
logger.warning("Invalid date range selected.")
|
| 107 |
return
|
| 108 |
date_start, date_end = date_range
|
| 109 |
|
|
|
|
| 112 |
data = get_filtered_data(lab_site, equipment_type, date_start, date_end)
|
| 113 |
if not data:
|
| 114 |
st.warning("No data available for the selected filters.")
|
| 115 |
+
logger.warning("No data returned for the selected filters.")
|
| 116 |
return
|
| 117 |
|
| 118 |
df = pd.DataFrame(data)
|
|
|
|
| 185 |
pdf_file = generate_pdf_report(df, lab_site, equipment_type, [date_start, date_end])
|
| 186 |
with open(pdf_file, "rb") as f:
|
| 187 |
st.download_button("Download PDF", f, file_name="LabOps_Report.pdf", mime="application/pdf")
|
| 188 |
+
logger.info("PDF report generated successfully.")
|
| 189 |
except Exception as e:
|
| 190 |
st.error(f"Failed to generate PDF: {e}")
|
| 191 |
+
logger.error(f"Failed to generate PDF: {e}")
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
| 194 |
+
try:
|
| 195 |
+
logger.info("Application starting...")
|
| 196 |
+
main()
|
| 197 |
+
except Exception as e:
|
| 198 |
+
logger.error(f"Application failed to start: {e}")
|
| 199 |
+
raise
|