Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- app.py +65 -0
- interface.py +406 -0
- knee_template.json +359 -0
- treegraph.py +226 -0
- utils.py +361 -0
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import interface
|
3 |
+
import utils
|
4 |
+
import treegraph as tg
|
5 |
+
|
6 |
+
system_prompt = """
|
7 |
+
You are a critical AI radiology assistant.
|
8 |
+
You are helping a radiologist correctly fill out a radiology report.
|
9 |
+
The report is regarding a Knee MRI.
|
10 |
+
"""
|
11 |
+
|
12 |
+
graph, nodes_dict = tg.build_tree_from_file("knee_template.json")
|
13 |
+
report_interface = interface.ReportChecklistInterface(
|
14 |
+
llm=utils.LLM(model="gpt-3.5-turbo"),
|
15 |
+
system_prompt=system_prompt,
|
16 |
+
graph=graph,
|
17 |
+
nodes_dict=nodes_dict,
|
18 |
+
)
|
19 |
+
|
20 |
+
if report_interface.prime_model() is False:
|
21 |
+
print("Model priming failed. Please try again.")
|
22 |
+
exit()
|
23 |
+
else:
|
24 |
+
print("Model priming successful.")
|
25 |
+
|
26 |
+
with gr.Blocks(theme="soft") as demo:
|
27 |
+
gr.Markdown("## Radiology Report Assistant")
|
28 |
+
gr.Markdown(report_interface.help_message)
|
29 |
+
|
30 |
+
running = gr.components.Variable(True)
|
31 |
+
report_textbox = gr.TextArea(label="Report", lines=20, max_lines=50)
|
32 |
+
check_btn = gr.Button(
|
33 |
+
value="Check Report",
|
34 |
+
)
|
35 |
+
clear_btn = gr.ClearButton(
|
36 |
+
value="Clear Messages",
|
37 |
+
)
|
38 |
+
quit_btn = gr.Button(
|
39 |
+
value="Quit",
|
40 |
+
)
|
41 |
+
results_textbox = gr.TextArea(label="Results", lines=20, max_lines=50)
|
42 |
+
clear_btn.add([results_textbox, report_textbox])
|
43 |
+
|
44 |
+
def check_report(report):
|
45 |
+
if running:
|
46 |
+
results = report_interface.process_input(report)
|
47 |
+
if results == "quit":
|
48 |
+
quit_fn()
|
49 |
+
elif results == "help":
|
50 |
+
return report_interface.help_message
|
51 |
+
elif results == "exception":
|
52 |
+
return "An exception occurred. Please try again."
|
53 |
+
else:
|
54 |
+
return results
|
55 |
+
else:
|
56 |
+
return "Model has been stopped."
|
57 |
+
|
58 |
+
def quit_fn():
|
59 |
+
running.value = False
|
60 |
+
results_textbox.value = "Model has been stopped."
|
61 |
+
|
62 |
+
check_btn.click(fn=check_report, inputs=[report_textbox], outputs=[results_textbox])
|
63 |
+
quit_btn.click(fn=quit_fn)
|
64 |
+
|
65 |
+
demo.launch()
|
interface.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
import treegraph as tg
|
4 |
+
import colorama
|
5 |
+
from colorama import Fore
|
6 |
+
import networkx as nx
|
7 |
+
import utils
|
8 |
+
import re
|
9 |
+
|
10 |
+
DEBUG = True
|
11 |
+
INPUT_COLOR = Fore.LIGHTGREEN_EX
|
12 |
+
DEBUG_COLOR = Fore.LIGHTBLACK_EX
|
13 |
+
OUTPUT_COLOR = Fore.LIGHTMAGENTA_EX
|
14 |
+
INFO_COLOR = Fore.BLUE
|
15 |
+
HELP_COLOR = Fore.CYAN
|
16 |
+
|
17 |
+
|
18 |
+
def print_debug(*args, color=DEBUG_COLOR):
|
19 |
+
"""
|
20 |
+
Prints debug messages if DEBUG is set to True.
|
21 |
+
"""
|
22 |
+
if DEBUG:
|
23 |
+
for arg in args:
|
24 |
+
print(color + str(arg))
|
25 |
+
|
26 |
+
|
27 |
+
class ReportInterface:
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
llm: utils.LLM,
|
31 |
+
system_prompt: str,
|
32 |
+
tree_graph: nx.Graph,
|
33 |
+
nodes_dict: dict[str, tg.Node],
|
34 |
+
api_key: str = None,
|
35 |
+
):
|
36 |
+
self.llm = llm
|
37 |
+
self.system_prompt = system_prompt
|
38 |
+
self.tree_graph = tree_graph
|
39 |
+
self.nodes_dict = nodes_dict
|
40 |
+
self.api_key = api_key
|
41 |
+
self.build()
|
42 |
+
|
43 |
+
def build(self):
|
44 |
+
utils.set_api_key(self.api_key)
|
45 |
+
self.system_prompt = utils.make_message("system", self.system_prompt)
|
46 |
+
self.visitable_nodes = self._get_visitable_nodes()
|
47 |
+
self.report_dict = self._get_report_dict()
|
48 |
+
|
49 |
+
self.active_node: tg.Node = self.nodes_dict["root"]
|
50 |
+
self.unique_visited_nodes = set() # set of nodes visited
|
51 |
+
self.node_journey = [] # list of nodes visited
|
52 |
+
self.distance_travelled = 0 # number of edges travelled
|
53 |
+
self.jumps = 0 # number of jumps
|
54 |
+
self.jump_lengths = [] # list of jump lengths
|
55 |
+
self.counter = 0 # number of questions asked
|
56 |
+
|
57 |
+
colorama.init(autoreset=True) # to reset the color after each print statement
|
58 |
+
|
59 |
+
self.help_message = f"""You are presented with a Knee MRI.
|
60 |
+
You are asked to fill out a radiology report.
|
61 |
+
Please only report the findings in the MRI.
|
62 |
+
Please mention your findings with the corresponding anatomical structures.
|
63 |
+
There are {len(self.visitable_nodes.keys())} visitable nodes in the tree.
|
64 |
+
You must visit as many nodes as possible, while avoiding too many jumps."""
|
65 |
+
|
66 |
+
def _get_visitable_nodes(self):
|
67 |
+
return dict(
|
68 |
+
zip(
|
69 |
+
[
|
70 |
+
node.name
|
71 |
+
for node in self.tree_graph.nodes
|
72 |
+
if node.name != "root" and node.has_children() is False
|
73 |
+
],
|
74 |
+
[
|
75 |
+
node
|
76 |
+
for node in self.tree_graph.nodes
|
77 |
+
if node.name != "root" and node.has_children() is False
|
78 |
+
],
|
79 |
+
)
|
80 |
+
)
|
81 |
+
|
82 |
+
def _get_report_dict(self):
|
83 |
+
return {
|
84 |
+
node.name: tg.Node(node.name, "", node.children)
|
85 |
+
for node in self.visitable_nodes.values()
|
86 |
+
}
|
87 |
+
|
88 |
+
@utils.debug(DEBUG, print_debug)
|
89 |
+
def _check_question_validity(
|
90 |
+
self,
|
91 |
+
question: str,
|
92 |
+
):
|
93 |
+
# let's ask the question from the model and check if it's valid
|
94 |
+
template_json = json.dumps(
|
95 |
+
{key: node.value for key, node in self.visitable_nodes.items()},
|
96 |
+
indent=4,
|
97 |
+
)
|
98 |
+
q = f"""the following is a Knee MRI report "template" in a JSON format with keys and values.
|
99 |
+
You are given a "finding" phrase from a radiologist.
|
100 |
+
Match as best as possible the "finding" with one of keys in the "template".
|
101 |
+
<template>
|
102 |
+
{template_json}
|
103 |
+
</template>
|
104 |
+
<finding>
|
105 |
+
{question}
|
106 |
+
</finding>
|
107 |
+
"available": [Is the "finding" relevant to any key in the "template"? say "yes" or "no".
|
108 |
+
Make sure the "finding" is relevant to Knee MRI and knee anatomy otherwise say 'no'.
|
109 |
+
Do not answer irrelevant phrases.]
|
110 |
+
"node": [if the above answer is 'yes', write only the KEY of the most relevant node to the "finding". otherwise, say 'none'.]
|
111 |
+
"""
|
112 |
+
|
113 |
+
keys = ["available", "node"]
|
114 |
+
prompt = [self.system_prompt] + [
|
115 |
+
utils.make_question(utils.JSON_TEMPLATE, question=q, keys=keys)
|
116 |
+
]
|
117 |
+
response = self.llm(prompt)
|
118 |
+
print_debug(
|
119 |
+
prompt,
|
120 |
+
response,
|
121 |
+
)
|
122 |
+
available = utils.json2dict(response)["available"].strip().lower()
|
123 |
+
node = utils.json2dict(response)["node"]
|
124 |
+
return available, node
|
125 |
+
|
126 |
+
def _update_node(self, node_name, findings):
|
127 |
+
self.report_dict[node_name].value += str(findings) + "\n"
|
128 |
+
response = f"Updated node '{node_name}' with finding '{findings}'"
|
129 |
+
print(OUTPUT_COLOR + response)
|
130 |
+
return response
|
131 |
+
|
132 |
+
def save_report(self, filename: str):
|
133 |
+
# convert performance metrics to json
|
134 |
+
metrics = {
|
135 |
+
"distance_travelled": self.distance_travelled,
|
136 |
+
"jumps": self.jumps,
|
137 |
+
"jump_lengths": self.jump_lengths,
|
138 |
+
"unique_visited_nodes": [node.name for node in self.unique_visited_nodes],
|
139 |
+
"node_journey": [node.name for node in self.node_journey],
|
140 |
+
"report": {
|
141 |
+
node_name: node.value for node_name, node in self.report_dict.items()
|
142 |
+
},
|
143 |
+
}
|
144 |
+
# save the report
|
145 |
+
with open(filename, "w") as file:
|
146 |
+
json.dump(metrics, file, indent=4)
|
147 |
+
|
148 |
+
def prime_model(self):
|
149 |
+
"""
|
150 |
+
Primes the model with the system prompt.
|
151 |
+
"""
|
152 |
+
q = "Are you ready to begin?\nSay 'yes' or 'no'."
|
153 |
+
keys = ["answer"]
|
154 |
+
response = self.llm(
|
155 |
+
[
|
156 |
+
self.system_prompt,
|
157 |
+
utils.make_question(utils.JSON_TEMPLATE, question=q, keys=keys),
|
158 |
+
],
|
159 |
+
)
|
160 |
+
print_debug(q, response)
|
161 |
+
if utils.json2dict(response)["answer"].lower() == "yes":
|
162 |
+
print(INFO_COLOR + "The model is ready.")
|
163 |
+
return True
|
164 |
+
else:
|
165 |
+
print(INFO_COLOR + "The model is not ready.")
|
166 |
+
return False
|
167 |
+
|
168 |
+
def performance_summary(self):
|
169 |
+
# print out the summary info
|
170 |
+
print(INFO_COLOR + "Performance Summary:")
|
171 |
+
print(
|
172 |
+
INFO_COLOR + f"Total distance travelled: {self.distance_travelled} edge(s)"
|
173 |
+
)
|
174 |
+
print(INFO_COLOR + f"Jump lengths: {self.jump_lengths}")
|
175 |
+
print(INFO_COLOR + f"Jump lengths mean: {np.mean(self.jump_lengths):.1f}")
|
176 |
+
print(INFO_COLOR + f"Jump lengths SD: {np.std(self.jump_lengths):.1f}")
|
177 |
+
print(INFO_COLOR + f"Nodes visited in order: {self.node_journey}")
|
178 |
+
print(INFO_COLOR + f"Unique nodes visited: {self.unique_visited_nodes}")
|
179 |
+
print(
|
180 |
+
INFO_COLOR
|
181 |
+
+ f"You have explored {len(self.unique_visited_nodes)/len(self.visitable_nodes):.1%} ({len(self.unique_visited_nodes)}/{len(self.visitable_nodes)}) of the tree."
|
182 |
+
)
|
183 |
+
print_debug("\n")
|
184 |
+
print_debug("Report Summary:".rjust(20))
|
185 |
+
for name, node in self.report_dict.items():
|
186 |
+
if node.value != "":
|
187 |
+
print_debug(f"{name}: {node.value}")
|
188 |
+
print(INFO_COLOR + f"total cost: ${self.llm.cost:.4f}")
|
189 |
+
print(INFO_COLOR + f"total tokens used: {self.llm.token_counter}")
|
190 |
+
|
191 |
+
def get_stats(self):
|
192 |
+
report_string = ""
|
193 |
+
for name, node in self.report_dict.items():
|
194 |
+
if node.value != "":
|
195 |
+
report_string += f"{name}: <{node.value}> \n"
|
196 |
+
return {
|
197 |
+
"Lengths travelled": self.distance_travelled,
|
198 |
+
"Number of jumps": self.jumps,
|
199 |
+
"Jump lengths": self.jump_lengths,
|
200 |
+
"Unique nodes visited": [node.name for node in self.unique_visited_nodes],
|
201 |
+
"Visited Nodes": [node.name for node in self.node_journey],
|
202 |
+
"Report": report_string,
|
203 |
+
}
|
204 |
+
|
205 |
+
def visualize_tree(self, **kwargs):
|
206 |
+
tg.visualize_graph(tg.from_list(self.node_journey), self.tree_graph, **kwargs)
|
207 |
+
|
208 |
+
def get_plot(self, **kwargs):
|
209 |
+
return tg.get_graph(tg.from_list(self.node_journey), self.tree_graph, **kwargs)
|
210 |
+
|
211 |
+
def process_input(self, input_text: str):
|
212 |
+
res = "n/a"
|
213 |
+
try:
|
214 |
+
finding = input_text
|
215 |
+
if finding.strip().lower() == "quit":
|
216 |
+
print(INFO_COLOR + "Exiting...")
|
217 |
+
return "quit"
|
218 |
+
elif finding.strip().lower() == "help":
|
219 |
+
return "help"
|
220 |
+
|
221 |
+
available, node = self._check_question_validity(finding)
|
222 |
+
if available != "yes":
|
223 |
+
print(
|
224 |
+
OUTPUT_COLOR
|
225 |
+
+ "Could not find a relevant node.\nWrite more clearly and provide more details."
|
226 |
+
)
|
227 |
+
return "n/a"
|
228 |
+
if node not in self.visitable_nodes.keys():
|
229 |
+
print(
|
230 |
+
OUTPUT_COLOR
|
231 |
+
+ "Could not find a relevant node.\nWrite more clearly and provide more details."
|
232 |
+
)
|
233 |
+
return "n/a"
|
234 |
+
else:
|
235 |
+
# modify the tree to update the node with findings
|
236 |
+
res = self._update_node(node, finding)
|
237 |
+
|
238 |
+
print(
|
239 |
+
INFO_COLOR
|
240 |
+
+ f"jumping from node '{self.active_node}' to node '{node}'..."
|
241 |
+
)
|
242 |
+
distance = tg.num_edges_between_nodes(
|
243 |
+
self.tree_graph, self.active_node, self.nodes_dict[node]
|
244 |
+
)
|
245 |
+
print(INFO_COLOR + f"distance travelled: {distance} edge(s)")
|
246 |
+
|
247 |
+
self.active_node = self.nodes_dict[node]
|
248 |
+
self.jumps += 1
|
249 |
+
self.jump_lengths.append(distance)
|
250 |
+
self.distance_travelled += distance
|
251 |
+
if self.active_node.name != "root":
|
252 |
+
self.unique_visited_nodes.add(self.active_node)
|
253 |
+
self.node_journey.append(self.active_node)
|
254 |
+
except Exception as ex:
|
255 |
+
print_debug(ex, color=Fore.LIGHTRED_EX)
|
256 |
+
return "exception"
|
257 |
+
|
258 |
+
self.counter += 1
|
259 |
+
try:
|
260 |
+
self.performance_summary()
|
261 |
+
except Exception as ex:
|
262 |
+
print_debug(ex, color=Fore.LIGHTRED_EX)
|
263 |
+
return res
|
264 |
+
|
265 |
+
|
266 |
+
class ReportChecklistInterface:
|
267 |
+
def __init__(
|
268 |
+
self,
|
269 |
+
llm: utils.LLM,
|
270 |
+
system_prompt: str,
|
271 |
+
graph: nx.Graph,
|
272 |
+
nodes_dict: dict[str, tg.Node],
|
273 |
+
api_key: str = None,
|
274 |
+
):
|
275 |
+
self.llm = llm
|
276 |
+
self.system_prompt = system_prompt
|
277 |
+
self.tree_graph: nx.Graph = graph
|
278 |
+
self.nodes_dict = nodes_dict
|
279 |
+
self.api_key = api_key
|
280 |
+
self.build()
|
281 |
+
|
282 |
+
def build(self):
|
283 |
+
utils.set_api_key(self.api_key)
|
284 |
+
self.system_prompt = utils.make_message("system", self.system_prompt)
|
285 |
+
self.visitable_nodes = self._get_visitable_nodes()
|
286 |
+
|
287 |
+
colorama.init(autoreset=True) # to reset the color after each print statement
|
288 |
+
|
289 |
+
self.help_message = f"""You are presented with a Knee MRI.
|
290 |
+
You are asked to fill out a radiology report.
|
291 |
+
Please only report the findings in the MRI.
|
292 |
+
Please mention your findings with the corresponding anatomical structures.
|
293 |
+
There are {len(self.visitable_nodes.keys())} visitable nodes in the tree."""
|
294 |
+
|
295 |
+
def _get_visitable_nodes(self):
|
296 |
+
return dict(
|
297 |
+
zip(
|
298 |
+
[
|
299 |
+
node.name
|
300 |
+
for node in self.tree_graph.nodes
|
301 |
+
if node.name != "root" and node.has_children() is False
|
302 |
+
],
|
303 |
+
[
|
304 |
+
node
|
305 |
+
for node in self.tree_graph.nodes
|
306 |
+
if node.name != "root" and node.has_children() is False
|
307 |
+
],
|
308 |
+
)
|
309 |
+
)
|
310 |
+
|
311 |
+
@utils.debug(DEBUG, print_debug)
|
312 |
+
def _check_report(
|
313 |
+
self,
|
314 |
+
report: str,
|
315 |
+
):
|
316 |
+
# let's ask the question from the model and check if it's valid
|
317 |
+
checklist_json = json.dumps(
|
318 |
+
{key: node.value for key, node in self.visitable_nodes.items()},
|
319 |
+
indent=4,
|
320 |
+
)
|
321 |
+
q = f"""the following is a Knee MRI "checklist" in JSON format with keys as items and values as findings:
|
322 |
+
A knee MRI "report" is also provided in raw text format written by a radiologist:
|
323 |
+
<checklist>
|
324 |
+
{checklist_json}
|
325 |
+
</checklist>
|
326 |
+
<report>
|
327 |
+
{report}
|
328 |
+
</report>
|
329 |
+
Your task is to find all the corresponding items from the "checklist" in the "report" and fill out a JSON with the same keys as the "checklist" but extract the corresponding values from the "report".
|
330 |
+
If a key is not found in the "report", please set the value to "n/a", otherwise set it to the corresponding finding from the "report".
|
331 |
+
You must check the "report" phrases one by one and find a corresponding key(s) for EACH phrase in the "report" from the "checklist" and fill out the "report_checked" JSON.
|
332 |
+
Try to fill out as many items as possible.
|
333 |
+
ALL of the items in the "checklist" must be filled out.
|
334 |
+
Don't generate findings that are not present in the "report" (new findings).
|
335 |
+
Be comprehensive and don't miss any findings that are present in the "report".
|
336 |
+
Watch out for encompassing terms (e.g., "cruciate ligaments" means both "ACL" and "PCL").
|
337 |
+
"thought_process": [Think in steps on how you would do this task.]
|
338 |
+
"report_ckecked" : [a JSON with the same keys as the "checklist" but take the values from the "report", as described above.]
|
339 |
+
"""
|
340 |
+
|
341 |
+
keys = ["thought_process", "report_checked"]
|
342 |
+
prompt = [self.system_prompt] + [
|
343 |
+
utils.make_question(utils.JSON_TEMPLATE, question=q, keys=keys)
|
344 |
+
]
|
345 |
+
response = self.llm(prompt)
|
346 |
+
print_debug(
|
347 |
+
prompt,
|
348 |
+
response,
|
349 |
+
)
|
350 |
+
report_checked = utils.json2dict(response)
|
351 |
+
return report_checked["report_checked"]
|
352 |
+
|
353 |
+
def prime_model(self):
|
354 |
+
"""
|
355 |
+
Primes the model with the system prompt.
|
356 |
+
"""
|
357 |
+
q = "Are you ready to begin?\nSay 'yes' or 'no'."
|
358 |
+
keys = ["answer"]
|
359 |
+
response = self.llm(
|
360 |
+
[
|
361 |
+
self.system_prompt,
|
362 |
+
utils.make_question(utils.JSON_TEMPLATE, question=q, keys=keys),
|
363 |
+
],
|
364 |
+
)
|
365 |
+
print_debug(q, response)
|
366 |
+
if utils.json2dict(response)["answer"].lower() == "yes":
|
367 |
+
print(INFO_COLOR + "The model is ready.")
|
368 |
+
return True
|
369 |
+
else:
|
370 |
+
print(INFO_COLOR + "The model is not ready.")
|
371 |
+
return False
|
372 |
+
|
373 |
+
def process_input(self, input_text: str):
|
374 |
+
try:
|
375 |
+
report = input_text
|
376 |
+
if report.strip().lower() == "quit":
|
377 |
+
print(INFO_COLOR + "Exiting...")
|
378 |
+
return "quit"
|
379 |
+
elif report.strip().lower() == "help":
|
380 |
+
return "help"
|
381 |
+
|
382 |
+
checked_report: dict = self._check_report(report)
|
383 |
+
# make a string of the report
|
384 |
+
# replace true with [checkmark emoji] and false with [cross emoji]
|
385 |
+
report_string = ""
|
386 |
+
CHECKMARK = "\u2705"
|
387 |
+
CROSS = "\u274C"
|
388 |
+
|
389 |
+
# we need a regex to convert the camelCase keys to a readable format
|
390 |
+
def camel2readable(camel: str):
|
391 |
+
string = re.sub("([a-z])([A-Z])", r"\1 \2", camel)
|
392 |
+
# captialize every word
|
393 |
+
string = " ".join([word.capitalize() for word in string.split()])
|
394 |
+
return string
|
395 |
+
|
396 |
+
for key, value in checked_report.items():
|
397 |
+
if str(value).lower() == "true":
|
398 |
+
report_string += f"{camel2readable(key)}: {CHECKMARK}\n"
|
399 |
+
elif str(value).lower() == "n/a":
|
400 |
+
report_string += f"{camel2readable(key)}: {CROSS}\n"
|
401 |
+
else:
|
402 |
+
report_string += f"{camel2readable(key)}: <{value}> {CHECKMARK}\n"
|
403 |
+
return report_string
|
404 |
+
except Exception as ex:
|
405 |
+
print_debug(ex, color=Fore.LIGHTRED_EX)
|
406 |
+
return "exception"
|
knee_template.json
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"root": {
|
3 |
+
"value": "root",
|
4 |
+
"parent": null,
|
5 |
+
"children": [
|
6 |
+
"kneeJointEffusion",
|
7 |
+
"kneeMeniscus",
|
8 |
+
"kneeAclPcl",
|
9 |
+
"kneeMcl",
|
10 |
+
"kneePosterolateralCorner",
|
11 |
+
"kneeExtensorMechanism",
|
12 |
+
"kneeCartilage",
|
13 |
+
"kneeBone",
|
14 |
+
"kneeOther"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
"kneeJointEffusion": {
|
18 |
+
"value": "Presence and/or extent of joint effusion.",
|
19 |
+
"parent": "root",
|
20 |
+
"children": []
|
21 |
+
},
|
22 |
+
"kneeMeniscus": {
|
23 |
+
"value": "",
|
24 |
+
"parent": "root",
|
25 |
+
"children": [
|
26 |
+
"kneeMeniscusMedialTearing",
|
27 |
+
"kneeMeniscusLateralTearing",
|
28 |
+
"kneeMeniscusWrisberg",
|
29 |
+
"kneeMeniscusRootTearing",
|
30 |
+
"kneeMeniscusRampLesion"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
"kneeMeniscusMedialTearing": {
|
34 |
+
"value": "Presence and/or severity of medial meniscus tearing",
|
35 |
+
"parent": "kneeMeniscus",
|
36 |
+
"children": []
|
37 |
+
},
|
38 |
+
"kneeMeniscusLateralTearing": {
|
39 |
+
"value": "Presence and/or severity of lateral meniscus tearing",
|
40 |
+
"parent": "kneeMeniscus",
|
41 |
+
"children": []
|
42 |
+
},
|
43 |
+
"kneeMeniscusWrisberg": {
|
44 |
+
"value": "Presence and/or severity of Wrisberg variant",
|
45 |
+
"parent": "kneeMeniscus",
|
46 |
+
"children": []
|
47 |
+
},
|
48 |
+
"kneeMeniscusRootTearing": {
|
49 |
+
"value": "Presence and/or severity of meniscus root tearing",
|
50 |
+
"parent": "kneeMeniscus",
|
51 |
+
"children": []
|
52 |
+
},
|
53 |
+
"kneeMeniscusRampLesion": {
|
54 |
+
"value": "Presence and/or severity of ramp lesion",
|
55 |
+
"parent": "kneeMeniscus",
|
56 |
+
"children": []
|
57 |
+
},
|
58 |
+
"kneeAclPcl": {
|
59 |
+
"value": "",
|
60 |
+
"parent": "root",
|
61 |
+
"children": [
|
62 |
+
"kneeAcl",
|
63 |
+
"kneePcl"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
"kneeAcl": {
|
67 |
+
"value": "",
|
68 |
+
"parent": "kneeAclPcl",
|
69 |
+
"children": [
|
70 |
+
"kneeAclTearing",
|
71 |
+
"kneeAclDegeneration",
|
72 |
+
"kneeAclReconstruction"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
"kneeAclTearing": {
|
76 |
+
"value": "Presence and/or severity of ACL tearing",
|
77 |
+
"parent": "kneeAcl",
|
78 |
+
"children": []
|
79 |
+
},
|
80 |
+
"kneeAclDegeneration": {
|
81 |
+
"value": "Presence and/or severity of ACL degeneration",
|
82 |
+
"parent": "kneeAcl",
|
83 |
+
"children": []
|
84 |
+
},
|
85 |
+
"kneeAclReconstruction": {
|
86 |
+
"value": "ACL reconstruction status",
|
87 |
+
"parent": "kneeAcl",
|
88 |
+
"children": []
|
89 |
+
},
|
90 |
+
"kneePcl": {
|
91 |
+
"value": "",
|
92 |
+
"parent": "kneeAclPcl",
|
93 |
+
"children": [
|
94 |
+
"kneePclTearing",
|
95 |
+
"kneePclDegeneration",
|
96 |
+
"kneePclReconstruction"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
"kneePclTearing": {
|
100 |
+
"value": "Presence and/or severity of PCL tearing",
|
101 |
+
"parent": "kneePcl",
|
102 |
+
"children": []
|
103 |
+
},
|
104 |
+
"kneePclDegeneration": {
|
105 |
+
"value": "Presence and/or severity of PCL degeneration",
|
106 |
+
"parent": "kneePcl",
|
107 |
+
"children": []
|
108 |
+
},
|
109 |
+
"kneePclReconstruction": {
|
110 |
+
"value": "PCL reconstruction status",
|
111 |
+
"parent": "kneePcl",
|
112 |
+
"children": []
|
113 |
+
},
|
114 |
+
"kneeMcl": {
|
115 |
+
"value": "",
|
116 |
+
"parent": "root",
|
117 |
+
"children": [
|
118 |
+
"kneeMclTearing",
|
119 |
+
"kneeMclDeepFibers",
|
120 |
+
"kneeMclSuperficialFibers"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
"kneeMclTearing": {
|
124 |
+
"value": "Presence and/or severity of MCL tearing",
|
125 |
+
"parent": "kneeMcl",
|
126 |
+
"children": []
|
127 |
+
},
|
128 |
+
"kneeMclDeepFibers": {
|
129 |
+
"value": "MCL deep fibers status",
|
130 |
+
"parent": "kneeMcl",
|
131 |
+
"children": []
|
132 |
+
},
|
133 |
+
"kneeMclSuperficialFibers": {
|
134 |
+
"value": "MCL superficial fibers status",
|
135 |
+
"parent": "kneeMcl",
|
136 |
+
"children": []
|
137 |
+
},
|
138 |
+
"kneePosterolateralCorner": {
|
139 |
+
"value": "",
|
140 |
+
"parent": "root",
|
141 |
+
"children": [
|
142 |
+
"kneeIlioTibialBand",
|
143 |
+
"kneeBicepsFemorisTendon",
|
144 |
+
"kneeLateralCollateralLigament"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
"kneeIlioTibialBand": {
|
148 |
+
"value": "Presence and/or severity of ilio-tibial band findings",
|
149 |
+
"parent": "kneePosterolateralCorner",
|
150 |
+
"children": []
|
151 |
+
},
|
152 |
+
"kneeBicepsFemorisTendon": {
|
153 |
+
"value": "Presence and/or severity of biceps femoris tendon findings",
|
154 |
+
"parent": "kneePosterolateralCorner",
|
155 |
+
"children": []
|
156 |
+
},
|
157 |
+
"kneeLateralCollateralLigament": {
|
158 |
+
"value": "Presence and/or severity of lateral collateral ligament findings",
|
159 |
+
"parent": "kneePosterolateralCorner",
|
160 |
+
"children": []
|
161 |
+
},
|
162 |
+
"kneeExtensorMechanism": {
|
163 |
+
"value": "",
|
164 |
+
"parent": "root",
|
165 |
+
"children": [
|
166 |
+
"kneeQuadricepsTendon",
|
167 |
+
"kneePatellarTendon"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"kneeQuadricepsTendon": {
|
171 |
+
"value": "",
|
172 |
+
"parent": "kneeExtensorMechanism",
|
173 |
+
"children": [
|
174 |
+
"kneeQuadricepsTendonTearing",
|
175 |
+
"kneeQuadricepsTendinopathy"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
"kneeQuadricepsTendonTearing": {
|
179 |
+
"value": "Presence and/or severity of quadriceps tendon tearing",
|
180 |
+
"parent": "kneeQuadricepsTendon",
|
181 |
+
"children": []
|
182 |
+
},
|
183 |
+
"kneeQuadricepsTendinopathy": {
|
184 |
+
"value": "Presence and/or severity of quadriceps tendinopathy",
|
185 |
+
"parent": "kneeQuadricepsTendon",
|
186 |
+
"children": []
|
187 |
+
},
|
188 |
+
"kneePatellarTendon": {
|
189 |
+
"value": "",
|
190 |
+
"parent": "kneeExtensorMechanism",
|
191 |
+
"children": [
|
192 |
+
"kneePatellarTendonTearing",
|
193 |
+
"kneePatellarTendinopathy"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
"kneePatellarTendonTearing": {
|
197 |
+
"value": "Presence and/or severity of patellar tendon tearing",
|
198 |
+
"parent": "kneePatellarTendon",
|
199 |
+
"children": []
|
200 |
+
},
|
201 |
+
"kneePatellarTendinopathy": {
|
202 |
+
"value": "Presence and/or severity of patellar tendinopathy",
|
203 |
+
"parent": "kneePatellarTendon",
|
204 |
+
"children": []
|
205 |
+
},
|
206 |
+
"kneeCartilage": {
|
207 |
+
"value": "Articular cartilage status",
|
208 |
+
"parent": "root",
|
209 |
+
"children": [
|
210 |
+
"kneeCartilageFemoral",
|
211 |
+
"kneeCartilageTibial",
|
212 |
+
"kneeCartilagePatellar",
|
213 |
+
"kneeOsteochondralLesion"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
"kneeCartilageFemoral": {
|
217 |
+
"value": "",
|
218 |
+
"parent": "kneeCartilage",
|
219 |
+
"children": [
|
220 |
+
"kneeCartilageFemoralMedial",
|
221 |
+
"kneeCartilageFemoralLateral"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
"kneeCartilageFemoralMedial": {
|
225 |
+
"value": "Presence and/or severity of knee medial femoral cartilage findings",
|
226 |
+
"parent": "kneeCartilageFemoral",
|
227 |
+
"children": []
|
228 |
+
},
|
229 |
+
"kneeCartilageFemoralLateral": {
|
230 |
+
"value": "Presence and/or severity of knee lateral femoral cartilage findings",
|
231 |
+
"parent": "kneeCartilageFemoral",
|
232 |
+
"children": []
|
233 |
+
},
|
234 |
+
"kneeCartilageTibial": {
|
235 |
+
"value": "",
|
236 |
+
"parent": "kneeCartilage",
|
237 |
+
"children": [
|
238 |
+
"kneeCartilageTibialMedial",
|
239 |
+
"kneeCartilageTibialLateral"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
"kneeCartilageTibialMedial": {
|
243 |
+
"value": "Presence and/or severity of knee medial tibial cartilage findings",
|
244 |
+
"parent": "kneeCartilageTibial",
|
245 |
+
"children": []
|
246 |
+
},
|
247 |
+
"kneeCartilageTibialLateral": {
|
248 |
+
"value": "Presence and/or severity of knee lateral tibial cartilage findings",
|
249 |
+
"parent": "kneeCartilageTibial",
|
250 |
+
"children": []
|
251 |
+
},
|
252 |
+
"kneeCartilagePatellar": {
|
253 |
+
"value": "",
|
254 |
+
"parent": "kneeCartilage",
|
255 |
+
"children": [
|
256 |
+
"kneeCartilagePatellarMedial",
|
257 |
+
"kneeCartilagePatellarLateral"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
"kneeOsteochondralLesion": {
|
261 |
+
"value": "Presence and/or severity of knee osteochondral lesions/defects",
|
262 |
+
"parent": "kneeCartilage",
|
263 |
+
"children": []
|
264 |
+
},
|
265 |
+
"kneeCartilagePatellarMedial": {
|
266 |
+
"value": "Presence and/or severity of knee medial patellar cartilage findings",
|
267 |
+
"parent": "kneeCartilagePatellar",
|
268 |
+
"children": []
|
269 |
+
},
|
270 |
+
"kneeCartilagePatellarLateral": {
|
271 |
+
"value": "Presence and/or severity of knee lateral patellar cartilage findings",
|
272 |
+
"parent": "kneeCartilagePatellar",
|
273 |
+
"children": []
|
274 |
+
},
|
275 |
+
"kneeBone": {
|
276 |
+
"value": "",
|
277 |
+
"parent": "root",
|
278 |
+
"children": [
|
279 |
+
"kneeBoneFracture",
|
280 |
+
"kneeBoneMarrowEdema",
|
281 |
+
"kneeSubchondralFracture",
|
282 |
+
"kneeOsteonecrosis",
|
283 |
+
"kneeBoneAvn"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
"kneeBoneFracture": {
|
287 |
+
"value": "Presence and/or severity and/or location and/or type of knee bone fracture",
|
288 |
+
"parent": "kneeBone",
|
289 |
+
"children": []
|
290 |
+
},
|
291 |
+
"kneeBoneMarrowEdema": {
|
292 |
+
"value": "Presence and/or severity of knee bone marrow edema/contusion",
|
293 |
+
"parent": "kneeBone",
|
294 |
+
"children": []
|
295 |
+
},
|
296 |
+
"kneeSubchondralFracture": {
|
297 |
+
"value": "Presence and/or severity of knee subchondral fractures",
|
298 |
+
"parent": "kneeBone",
|
299 |
+
"children": []
|
300 |
+
},
|
301 |
+
"kneeOsteonecrosis": {
|
302 |
+
"value": "Presence and/or severity of knee osteonecrosis",
|
303 |
+
"parent": "kneeBone",
|
304 |
+
"children": []
|
305 |
+
},
|
306 |
+
"kneeBoneAvn": {
|
307 |
+
"value": "Presence and/or severity of knee avascular necrosis",
|
308 |
+
"parent": "kneeBone",
|
309 |
+
"children": []
|
310 |
+
},
|
311 |
+
"kneeOther": {
|
312 |
+
"value": "Other knee findings",
|
313 |
+
"parent": "root",
|
314 |
+
"children": [
|
315 |
+
"kneeBursa",
|
316 |
+
"kneePoplitealCyst",
|
317 |
+
"kneeGanglionCyst",
|
318 |
+
"kneeLipoma",
|
319 |
+
"kneeMass",
|
320 |
+
"kneeSynovium",
|
321 |
+
"other"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
"kneeBursa": {
|
325 |
+
"value": "Presence and/or severity of knee bursa findings, e.g. bursitis",
|
326 |
+
"parent": "kneeOther",
|
327 |
+
"children": []
|
328 |
+
},
|
329 |
+
"kneePoplitealCyst": {
|
330 |
+
"value": "Presence and/or extent of knee popliteal/Baker's cyst",
|
331 |
+
"parent": "kneeOther",
|
332 |
+
"children": []
|
333 |
+
},
|
334 |
+
"kneeGanglionCyst": {
|
335 |
+
"value": "Presence and/or extent of knee ganglion cyst",
|
336 |
+
"parent": "kneeOther",
|
337 |
+
"children": []
|
338 |
+
},
|
339 |
+
"kneeLipoma": {
|
340 |
+
"value": "Presence and/or extent of knee lipoma",
|
341 |
+
"parent": "kneeOther",
|
342 |
+
"children": []
|
343 |
+
},
|
344 |
+
"kneeMass": {
|
345 |
+
"value": "Presence and/or extent of knee mass",
|
346 |
+
"parent": "kneeOther",
|
347 |
+
"children": []
|
348 |
+
},
|
349 |
+
"kneeSynovium": {
|
350 |
+
"value": "Presence and/or extent of knee synovial findings, e.g. synovitis, thickening",
|
351 |
+
"parent": "kneeOther",
|
352 |
+
"children": []
|
353 |
+
},
|
354 |
+
"other": {
|
355 |
+
"value": "Any other findings not listed above",
|
356 |
+
"parent": "kneeOther",
|
357 |
+
"children": []
|
358 |
+
}
|
359 |
+
}
|
treegraph.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import networkx as nx
|
2 |
+
import json
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
|
6 |
+
class Node:
|
7 |
+
def __init__(self, name: str, value=None, parent=None, children: list = []):
|
8 |
+
self.name = name
|
9 |
+
self.children = set(children)
|
10 |
+
self.parent = parent
|
11 |
+
self.value = value
|
12 |
+
|
13 |
+
def __repr__(self):
|
14 |
+
return self.name
|
15 |
+
|
16 |
+
def __str__(self):
|
17 |
+
return self.name
|
18 |
+
|
19 |
+
def __eq__(self, other):
|
20 |
+
return self.name == other.name
|
21 |
+
|
22 |
+
def __hash__(self) -> int:
|
23 |
+
return hash(self.name)
|
24 |
+
|
25 |
+
# make serializable for json
|
26 |
+
def __getstate__(self):
|
27 |
+
return self.__dict__
|
28 |
+
|
29 |
+
def __dict__(self):
|
30 |
+
# return a dict of the node's attributes
|
31 |
+
return {
|
32 |
+
"name": self.name,
|
33 |
+
"children": self.children,
|
34 |
+
"parent": self.parent,
|
35 |
+
"value": self.value,
|
36 |
+
}
|
37 |
+
|
38 |
+
def to_json(self):
|
39 |
+
"""
|
40 |
+
Returns a JSON string representation of the node.
|
41 |
+
"""
|
42 |
+
return json.dumps(self.__dict__)
|
43 |
+
|
44 |
+
def add_child(self, child):
|
45 |
+
self.children.add(child)
|
46 |
+
|
47 |
+
def has_children(self):
|
48 |
+
return len(self.children) > 0
|
49 |
+
|
50 |
+
def set_parent(self, new_parent):
|
51 |
+
self.parent = new_parent
|
52 |
+
|
53 |
+
def set_value(self, new_value):
|
54 |
+
self.value = new_value
|
55 |
+
|
56 |
+
|
57 |
+
def read_json(fname: str) -> dict:
|
58 |
+
assert fname.endswith(".json"), "File must be a json file"
|
59 |
+
with open(fname, "r") as f:
|
60 |
+
data = json.load(f)
|
61 |
+
return dict(data)
|
62 |
+
|
63 |
+
|
64 |
+
def build_tree_from_dict(data: dict, connect_children: bool = True):
|
65 |
+
# every dict key is a node's name
|
66 |
+
# dict value is a dict with keys "value", "parent", "children"
|
67 |
+
# "value" is the node's value
|
68 |
+
# "parent" is the node's parent's name
|
69 |
+
# "children" is a list of the node's children's names
|
70 |
+
# create a networkx graph
|
71 |
+
G = nx.Graph()
|
72 |
+
nodes_dict = dict()
|
73 |
+
# build the nodes
|
74 |
+
for name, info in data.items():
|
75 |
+
value = info["value"]
|
76 |
+
parent = info["parent"]
|
77 |
+
children: list = info["children"]
|
78 |
+
nodes_dict[name] = Node(
|
79 |
+
name=name, parent=parent, children=children, value=value
|
80 |
+
)
|
81 |
+
G.add_node(nodes_dict[name], value=value)
|
82 |
+
# build the edges
|
83 |
+
for _, node in nodes_dict.items():
|
84 |
+
for child in node.children:
|
85 |
+
G.add_edge(node, nodes_dict[child])
|
86 |
+
# connect children to each other if connect_children is True
|
87 |
+
if connect_children:
|
88 |
+
for child2 in node.children:
|
89 |
+
if child != child2:
|
90 |
+
G.add_edge(nodes_dict[child], nodes_dict[child2])
|
91 |
+
return G, nodes_dict
|
92 |
+
|
93 |
+
|
94 |
+
def build_tree_from_file(fname: str):
|
95 |
+
data = read_json(fname)
|
96 |
+
return build_tree_from_dict(data)
|
97 |
+
|
98 |
+
|
99 |
+
# calculate the number of edges between two nodes
|
100 |
+
def num_edges_between_nodes(G, node1, node2):
|
101 |
+
return len(nx.shortest_path(G, node1, node2)) - 1
|
102 |
+
|
103 |
+
|
104 |
+
def explore_bfs(G: nx.Graph, source: Node, nodes_dict: dict[str, Node]):
|
105 |
+
# start from a source node and explore the graph in a breadth-first manner
|
106 |
+
# prioritize nodes with non-empty values
|
107 |
+
# explore the graph and return a list of nodes in the order they were explored
|
108 |
+
explored_nodes = []
|
109 |
+
queue = [source]
|
110 |
+
while queue:
|
111 |
+
node = queue.pop(0)
|
112 |
+
explored_nodes.append(node)
|
113 |
+
for child in node.children:
|
114 |
+
if nodes_dict[child].value:
|
115 |
+
queue.insert(0, nodes_dict[child])
|
116 |
+
else:
|
117 |
+
queue.append(nodes_dict[child])
|
118 |
+
return explored_nodes
|
119 |
+
|
120 |
+
|
121 |
+
def from_list(node_list: list[Node], directional=True):
|
122 |
+
# create a tree from a list of nodes
|
123 |
+
# and label the edges from the first node to the last node from 1 to n
|
124 |
+
if directional:
|
125 |
+
G = nx.DiGraph()
|
126 |
+
else:
|
127 |
+
G = nx.Graph()
|
128 |
+
G.add_nodes_from(node_list)
|
129 |
+
for i in range(len(node_list) - 1):
|
130 |
+
G.add_edge(node_list[i], node_list[i + 1], label=i + 1)
|
131 |
+
return G
|
132 |
+
|
133 |
+
|
134 |
+
def visualize_graph(
|
135 |
+
graph: nx.Graph,
|
136 |
+
layout_graph: nx.Graph,
|
137 |
+
title="BFS Tree",
|
138 |
+
fig_size=(30, 20),
|
139 |
+
title_fontsize=20,
|
140 |
+
edge_width=1,
|
141 |
+
font_size=9,
|
142 |
+
node_size=500,
|
143 |
+
node_shape="o",
|
144 |
+
prog="dot",
|
145 |
+
):
|
146 |
+
graphviz_args = "-Goverlap=false -Gsplines=true -Gsep=0.1 -Gnodesep=0.1 -Gmaxiter=1000 -Gepsilon=0.0001 -Gstart=0"
|
147 |
+
_, ax = plt.subplots(figsize=fig_size)
|
148 |
+
ax.set_title(title, fontsize=title_fontsize)
|
149 |
+
# also draw edge labels
|
150 |
+
nx.draw(
|
151 |
+
graph,
|
152 |
+
ax=ax,
|
153 |
+
with_labels=True,
|
154 |
+
# color every node lightblue except the root which is colored red
|
155 |
+
node_color=(["lightgreen"] + ["lightblue"] * (len(graph.nodes) - 2) + ["red"])
|
156 |
+
if len(graph.nodes) > 2
|
157 |
+
else ["lightgreen", "red"]
|
158 |
+
if len(graph.nodes) == 2
|
159 |
+
else ["lightgreen"],
|
160 |
+
edge_color="gray",
|
161 |
+
width=edge_width,
|
162 |
+
font_size=font_size,
|
163 |
+
# node size to be proportional to the node's value
|
164 |
+
node_size=node_size,
|
165 |
+
# shape set to rectangle
|
166 |
+
node_shape=node_shape,
|
167 |
+
pos=nx.nx_agraph.graphviz_layout(
|
168 |
+
layout_graph, prog=prog, root="root", args=graphviz_args
|
169 |
+
),
|
170 |
+
)
|
171 |
+
nx.draw_networkx_edge_labels(
|
172 |
+
graph,
|
173 |
+
pos=nx.nx_agraph.graphviz_layout(
|
174 |
+
layout_graph, prog=prog, root="root", args=graphviz_args
|
175 |
+
),
|
176 |
+
edge_labels=nx.get_edge_attributes(graph, "label"),
|
177 |
+
font_size=font_size,
|
178 |
+
)
|
179 |
+
plt.show()
|
180 |
+
|
181 |
+
|
182 |
+
def get_graph(
|
183 |
+
graph: nx.Graph,
|
184 |
+
layout_graph: nx.Graph,
|
185 |
+
title="BFS Tree",
|
186 |
+
fig_size=(30, 20),
|
187 |
+
title_fontsize=20,
|
188 |
+
edge_width=1,
|
189 |
+
font_size=9,
|
190 |
+
node_size=500,
|
191 |
+
node_shape="o",
|
192 |
+
prog="dot",
|
193 |
+
):
|
194 |
+
graphviz_args = "-Goverlap=false -Gsplines=true -Gsep=0.1 -Gnodesep=0.1 -Gmaxiter=1000 -Gepsilon=0.0001 -Gstart=0"
|
195 |
+
fig, ax = plt.subplots(figsize=fig_size)
|
196 |
+
ax.set_title(title, fontsize=title_fontsize)
|
197 |
+
nx.draw(
|
198 |
+
graph,
|
199 |
+
ax=ax,
|
200 |
+
with_labels=True,
|
201 |
+
# color every node lightblue except the root which is colored red
|
202 |
+
node_color=(["lightgreen"] + ["lightblue"] * (len(graph.nodes) - 2) + ["red"])
|
203 |
+
if len(graph.nodes) > 2
|
204 |
+
else ["lightgreen", "red"]
|
205 |
+
if len(graph.nodes) == 2
|
206 |
+
else ["lightgreen"],
|
207 |
+
edge_color="gray",
|
208 |
+
width=edge_width,
|
209 |
+
font_size=font_size,
|
210 |
+
# node size to be proportional to the node's value
|
211 |
+
node_size=node_size,
|
212 |
+
# shape set to rectangle
|
213 |
+
node_shape=node_shape,
|
214 |
+
pos=nx.nx_agraph.graphviz_layout(
|
215 |
+
layout_graph, prog=prog, root="root", args=graphviz_args
|
216 |
+
),
|
217 |
+
)
|
218 |
+
nx.draw_networkx_edge_labels(
|
219 |
+
graph,
|
220 |
+
pos=nx.nx_agraph.graphviz_layout(
|
221 |
+
layout_graph, prog=prog, root="root", args=graphviz_args
|
222 |
+
),
|
223 |
+
edge_labels=nx.get_edge_attributes(graph, "label"),
|
224 |
+
font_size=font_size,
|
225 |
+
)
|
226 |
+
return fig, ax
|
utils.py
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import colorama
|
2 |
+
from colorama import Fore, Style
|
3 |
+
import openai
|
4 |
+
from tenacity import retry, stop_after_attempt, wait_fixed
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import tiktoken
|
8 |
+
import functools as ft
|
9 |
+
import time
|
10 |
+
|
11 |
+
JSON_TEMPLATE = """
|
12 |
+
{question}
|
13 |
+
The required key(s) are: {keys}.
|
14 |
+
Only and only respond with the key(s) and value(s) mentioned above.
|
15 |
+
Your answer in valid JSON format:\n
|
16 |
+
"""
|
17 |
+
|
18 |
+
MODEL_COST_DICT = {
|
19 |
+
"gpt-3.5-turbo": {
|
20 |
+
"input": 0.0015,
|
21 |
+
"output": 0.002,
|
22 |
+
},
|
23 |
+
"gpt-4": {
|
24 |
+
"input": 0.03,
|
25 |
+
"output": 0.06,
|
26 |
+
},
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
def set_api_key(key=None):
|
31 |
+
"""Sets the OpenAI API key."""
|
32 |
+
if key is None:
|
33 |
+
key = os.environ.get("OPENAI_API_KEY")
|
34 |
+
openai.api_key = key
|
35 |
+
|
36 |
+
|
37 |
+
def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
38 |
+
"""Returns the number of tokens in a text string."""
|
39 |
+
encoding = tiktoken.get_encoding(encoding_name)
|
40 |
+
num_tokens = len(encoding.encode(string))
|
41 |
+
return num_tokens
|
42 |
+
|
43 |
+
|
44 |
+
def num_tokens_from_messages(messages: list[dict], model="gpt-3.5-turbo-0613"):
|
45 |
+
"""Returns the number of tokens used by a list of messages."""
|
46 |
+
try:
|
47 |
+
encoding = tiktoken.encoding_for_model(model)
|
48 |
+
except KeyError:
|
49 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
50 |
+
if model == "gpt-3.5-turbo-0613": # note: future models may deviate from this
|
51 |
+
num_tokens = 0
|
52 |
+
for message in messages:
|
53 |
+
num_tokens += (
|
54 |
+
4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
|
55 |
+
)
|
56 |
+
for key, value in message.items():
|
57 |
+
num_tokens += len(encoding.encode(value))
|
58 |
+
if key == "name": # if there's a name, the role is omitted
|
59 |
+
num_tokens += -1 # role is always required and always 1 token
|
60 |
+
num_tokens += 2 # every reply is primed with <im_start>assistant
|
61 |
+
return num_tokens
|
62 |
+
else:
|
63 |
+
raise NotImplementedError(
|
64 |
+
f"""num_tokens_from_messages() is not presently implemented for model {model}.
|
65 |
+
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
|
70 |
+
def chat(messages: list[dict], model="gpt-3.5-turbo", temperature=0.0):
|
71 |
+
response = openai.ChatCompletion().create(
|
72 |
+
model=model,
|
73 |
+
messages=messages,
|
74 |
+
temperature=temperature,
|
75 |
+
)
|
76 |
+
return response["choices"][0]["message"]["content"]
|
77 |
+
|
78 |
+
|
79 |
+
def make_message(role: str, content: str) -> dict:
|
80 |
+
return {
|
81 |
+
"role": role,
|
82 |
+
"content": content,
|
83 |
+
}
|
84 |
+
|
85 |
+
|
86 |
+
def make_prompt(template: str, **kwargs):
|
87 |
+
return template.format(**kwargs)
|
88 |
+
|
89 |
+
|
90 |
+
def unravel_messages(messages: list[dict]) -> list[str]:
|
91 |
+
"""Returns a string representation of a list of messages."""
|
92 |
+
return [f"{message['role']}: {message['content']}" for message in messages]
|
93 |
+
|
94 |
+
|
95 |
+
class LLM:
|
96 |
+
def __init__(self, model="gpt-3.5-turbo", temperature=0.0):
|
97 |
+
self.model = model
|
98 |
+
self.temperature = temperature
|
99 |
+
self.token_counter = 0
|
100 |
+
self.cost = 0.0
|
101 |
+
|
102 |
+
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
|
103 |
+
def chat(self, messages: list[dict]):
|
104 |
+
response = openai.ChatCompletion().create(
|
105 |
+
model=self.model,
|
106 |
+
messages=messages,
|
107 |
+
temperature=self.temperature,
|
108 |
+
)
|
109 |
+
self.token_counter += int(response["usage"]["total_tokens"])
|
110 |
+
self.cost += (
|
111 |
+
response["usage"]["prompt_tokens"]
|
112 |
+
/ 1000
|
113 |
+
* MODEL_COST_DICT[self.model]["input"]
|
114 |
+
+ response["usage"]["completion_tokens"]
|
115 |
+
/ 1000
|
116 |
+
* MODEL_COST_DICT[self.model]["output"]
|
117 |
+
)
|
118 |
+
return response["choices"][0]["message"]["content"]
|
119 |
+
|
120 |
+
def reset(self):
|
121 |
+
self.token_counter = 0
|
122 |
+
self.cost = 0.0
|
123 |
+
|
124 |
+
def __call__(self, messages: list[dict]):
|
125 |
+
return self.chat(messages)
|
126 |
+
|
127 |
+
|
128 |
+
class SummaryMemory:
|
129 |
+
"""
|
130 |
+
A class that manages a memory of messages and automatically summarizes them when the maximum token limit is reached.
|
131 |
+
|
132 |
+
Attributes:
|
133 |
+
max_token_limit (int): The maximum number of tokens allowed in the memory before summarization occurs.
|
134 |
+
messages (list[dict]): A list of messages in the memory.
|
135 |
+
model (str): The name of the GPT model to use for chat completion.
|
136 |
+
ai_role (str): The role of the AI in the conversation.
|
137 |
+
human_role (str): The role of the human in the conversation.
|
138 |
+
auto_summarize (bool): Whether to automatically summarize the messages when the maximum token limit is reached.
|
139 |
+
"""
|
140 |
+
|
141 |
+
# ...
|
142 |
+
summary_template = "Summarize the following messages into a paragraph and replace '{user}' with '{human_role}', and '{assistant}' with '{ai_role}':\n{messages}"
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
system_prompt="",
|
147 |
+
max_token_limit=4000,
|
148 |
+
model="gpt-3.5-turbo",
|
149 |
+
ai_role="answer",
|
150 |
+
human_role="question/exam",
|
151 |
+
auto_summarize=False,
|
152 |
+
):
|
153 |
+
self.max_token_limit = max_token_limit
|
154 |
+
self.messages: list[dict] = []
|
155 |
+
self.model = model
|
156 |
+
self.ai_role = ai_role
|
157 |
+
self.human_role = human_role
|
158 |
+
self.auto_summarize = auto_summarize
|
159 |
+
self.system_prompt = system_prompt
|
160 |
+
self.reset()
|
161 |
+
|
162 |
+
def reset(self):
|
163 |
+
self.messages = [self.system_prompt]
|
164 |
+
|
165 |
+
def remove_last(self):
|
166 |
+
if len(self.messages) > 1: # don't remove the system prompt
|
167 |
+
self.messages.pop()
|
168 |
+
|
169 |
+
def remove(
|
170 |
+
self, index: int
|
171 |
+
): # don't remove the system prompt and start counting from 1
|
172 |
+
if index > 0 and index < len(self.messages):
|
173 |
+
self.messages.pop(index)
|
174 |
+
|
175 |
+
def replace(self, index: int, message: dict):
|
176 |
+
if index > 0 and index < len(self.messages):
|
177 |
+
self.messages[index] = message
|
178 |
+
|
179 |
+
def change_system_prompt(self, new_prompt: str):
|
180 |
+
self.system_prompt = new_prompt
|
181 |
+
self.messages[0] = new_prompt
|
182 |
+
|
183 |
+
def remove_first(self):
|
184 |
+
# dont remove the system prompt
|
185 |
+
if len(self.messages) > 1:
|
186 |
+
self.messages.pop(1) # remove the first message after the system prompt
|
187 |
+
|
188 |
+
def append(self, message: dict):
|
189 |
+
total_tokens = num_tokens_from_messages(self.messages + [message])
|
190 |
+
|
191 |
+
while (
|
192 |
+
self.auto_summarize and total_tokens > self.max_token_limit
|
193 |
+
): # keep summarizing until we're under the limit
|
194 |
+
self.summarize()
|
195 |
+
total_tokens = num_tokens_from_messages(self.messages + [message])
|
196 |
+
|
197 |
+
self.messages.append(message)
|
198 |
+
|
199 |
+
def summarize(self):
|
200 |
+
prompt = make_prompt(
|
201 |
+
self.summary_template,
|
202 |
+
user="user",
|
203 |
+
human_role=self.human_role,
|
204 |
+
assistant="assistant",
|
205 |
+
ai_role=self.ai_role,
|
206 |
+
messages="\n".join(
|
207 |
+
unravel_messages(self.messages[1:])
|
208 |
+
), # don't include the system prompt
|
209 |
+
)
|
210 |
+
summary = chat(
|
211 |
+
messages=[make_message("user", prompt)],
|
212 |
+
model=self.model,
|
213 |
+
)
|
214 |
+
self.reset()
|
215 |
+
self.append(make_message("user", summary))
|
216 |
+
|
217 |
+
def get_messages(self):
|
218 |
+
return self.messages[1:] # don't include the system prompt
|
219 |
+
|
220 |
+
def get_unraveled_messages(self):
|
221 |
+
return unravel_messages(self.messages[1:])
|
222 |
+
|
223 |
+
|
224 |
+
class MemoryBuffer:
|
225 |
+
"""
|
226 |
+
A class that manages a buffer of messages and clips them to a maximum token limit.
|
227 |
+
|
228 |
+
Attributes:
|
229 |
+
max_token_limit (int): The maximum number of tokens allowed in the buffer.
|
230 |
+
messages (list[dict]): A list of messages in the buffer.
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(
|
234 |
+
self,
|
235 |
+
system_prompt,
|
236 |
+
max_token_limit=1000,
|
237 |
+
):
|
238 |
+
"""
|
239 |
+
Initializes a new instance of the MemoryBuffer class.
|
240 |
+
|
241 |
+
Args:
|
242 |
+
max_token_limit (int, optional): The maximum number of tokens allowed in the buffer. Defaults to 1000.
|
243 |
+
"""
|
244 |
+
self.max_token_limit = max_token_limit
|
245 |
+
self.messages = []
|
246 |
+
self.system_prompt = system_prompt
|
247 |
+
self.reset()
|
248 |
+
|
249 |
+
def reset(self):
|
250 |
+
"""
|
251 |
+
Resets the buffer by clearing all messages.
|
252 |
+
"""
|
253 |
+
self.messages = [self.system_prompt]
|
254 |
+
|
255 |
+
def add(self, message: dict):
|
256 |
+
"""
|
257 |
+
Adds a message to the buffer and clips the buffer to the maximum token limit.
|
258 |
+
|
259 |
+
Args:
|
260 |
+
message (dict): The message to add to the buffer.
|
261 |
+
"""
|
262 |
+
total_tokens = num_tokens_from_messages(self.messages + [message])
|
263 |
+
if total_tokens > self.max_token_limit:
|
264 |
+
# clip the messages to the max token limit
|
265 |
+
# from the end of the list
|
266 |
+
# remove messages from the beginning of the list
|
267 |
+
# until the total number of tokens is less than the max token limit
|
268 |
+
while total_tokens > self.max_token_limit:
|
269 |
+
self.messages = self.messages[1:]
|
270 |
+
total_tokens = num_tokens_from_messages(self.messages + [message])
|
271 |
+
self.messages.append(message)
|
272 |
+
|
273 |
+
def remove(self, message: dict):
|
274 |
+
"""
|
275 |
+
Removes a message from the buffer.
|
276 |
+
|
277 |
+
Args:
|
278 |
+
message (dict): The message to remove from the buffer.
|
279 |
+
"""
|
280 |
+
if message in self.messages:
|
281 |
+
self.messages.remove(message)
|
282 |
+
|
283 |
+
def remove_last(self):
|
284 |
+
"""
|
285 |
+
Removes the last message from the buffer.
|
286 |
+
"""
|
287 |
+
if len(self.messages) > 0:
|
288 |
+
self.messages.pop()
|
289 |
+
|
290 |
+
def remove_first(self):
|
291 |
+
"""
|
292 |
+
Removes the first message from the buffer.
|
293 |
+
"""
|
294 |
+
if len(self.messages) > 0:
|
295 |
+
self.messages.pop(0)
|
296 |
+
|
297 |
+
|
298 |
+
def json2dict(string: str) -> dict:
|
299 |
+
"""Returns a dictionary of variables from a string containing JSON."""
|
300 |
+
try:
|
301 |
+
return json.loads(string)
|
302 |
+
except json.decoder.JSONDecodeError:
|
303 |
+
print("Error: JSONDecodeError")
|
304 |
+
return {}
|
305 |
+
|
306 |
+
|
307 |
+
def print_help(num_nodes, color):
|
308 |
+
"""
|
309 |
+
Prints the help message for the AI assistant.
|
310 |
+
"""
|
311 |
+
colorama.init()
|
312 |
+
print(color + "The AI assistant presents a clinical case and asks for a diagnosis.")
|
313 |
+
print(
|
314 |
+
color + "You need to explore the case by asking questions to the AI assistant."
|
315 |
+
)
|
316 |
+
print(
|
317 |
+
color
|
318 |
+
+ "You have to ask questions in a logical order, conforming to the clinical guidelines."
|
319 |
+
)
|
320 |
+
print(
|
321 |
+
color
|
322 |
+
+ "You need to minimize the number of jump between subjects, while covering as many subjects as possible."
|
323 |
+
)
|
324 |
+
print(color + f"there are a total of {num_nodes} visitable nodes in the tree")
|
325 |
+
print(
|
326 |
+
color
|
327 |
+
+ "you have to explore the tree as much as possible while avoiding jumps and travelling excessively."
|
328 |
+
)
|
329 |
+
print(Style.RESET_ALL)
|
330 |
+
|
331 |
+
|
332 |
+
def make_question(template=JSON_TEMPLATE, role="user", **kwargs) -> dict:
|
333 |
+
prompt = make_prompt(template=template, **kwargs)
|
334 |
+
message = make_message(role, prompt)
|
335 |
+
return message
|
336 |
+
|
337 |
+
|
338 |
+
# a debugging decorator and use functools to preserve the function name and docstring
|
339 |
+
# the decorator gets DEBUG as an argument to turn on or off debugging
|
340 |
+
def debug(DEBUG, print_func, measure_time=True):
|
341 |
+
def decorator(func):
|
342 |
+
@ft.wraps(func)
|
343 |
+
def wrapper(*args, **kwargs):
|
344 |
+
if DEBUG:
|
345 |
+
print_func(f"\nCalling {func.__name__}")
|
346 |
+
if measure_time and DEBUG:
|
347 |
+
start = time.time()
|
348 |
+
result = func(*args, **kwargs)
|
349 |
+
if measure_time and DEBUG:
|
350 |
+
end = time.time()
|
351 |
+
print_func(f"Elapsed time: {end - start:.2f}s")
|
352 |
+
if DEBUG:
|
353 |
+
print_func(f"Returning {func.__name__}")
|
354 |
+
return result
|
355 |
+
|
356 |
+
return wrapper
|
357 |
+
|
358 |
+
return decorator
|
359 |
+
|
360 |
+
|
361 |
+
# to use the decorator, add @debug(DEBUG) above the function definition
|