Spaces:
Running
Running
from gradio.components import Component | |
import gradio as gr | |
import pandas as pd | |
from abc import ABC, abstractclassmethod | |
import inspect | |
class BaseTCOModel(ABC): | |
# TO DO: Find way to specify which component should be used for computing cost | |
def __setattr__(self, name, value): | |
if isinstance(value, Component): | |
self._components.append(value) | |
self.__dict__[name] = value | |
def __init__(self): | |
super(BaseTCOModel, self).__setattr__("_components", []) | |
self.use_case = None | |
def get_components(self) -> list[Component]: | |
return self._components | |
def get_components_for_cost_computing(self): | |
return self.components_for_cost_computing | |
def get_name(self): | |
return self.name | |
def register_components_for_cost_computing(self): | |
args = inspect.getfullargspec(self.compute_cost_per_token)[0][1:] | |
self.components_for_cost_computing = [self.__getattribute__(arg) for arg in args] | |
def compute_cost_per_token(self): | |
pass | |
def render(self): | |
pass | |
def set_name(self, name): | |
self.name = name | |
def set_formula(self, formula): | |
self.formula = formula | |
def get_formula(self): | |
return self.formula | |
def set_latency(self, latency): | |
self.latency = latency | |
def get_latency(self): | |
return self.latency | |
class OpenAIModel(BaseTCOModel): | |
def __init__(self): | |
self.set_name("(SaaS) OpenAI") | |
self.set_formula(r"""$CR = \frac{CIT\_1K \times IT + COT\_1K \times OT}{1000}$ <br> | |
with: <br> | |
CR = Cost per Request <br> | |
CIT_1K = Cost per 1000 Input Tokens <br> | |
COT_1K = Cost per 1000 Output Tokens <br> | |
IT = Input Tokens <br> | |
OT = Output Tokens | |
""") | |
self.latency = "15s" #Default value for GPT4 | |
super().__init__() | |
def render(self): | |
def on_model_change(model): | |
if model == "GPT-4": | |
self.latency = "15s" | |
return gr.Dropdown.update(choices=["8K", "32K"]) | |
else: | |
self.latency = "5s" | |
return gr.Dropdown.update(choices=["4K", "16K"], value="4K") | |
def define_cost_per_token(model, context_length): | |
if model == "GPT-4" and context_length == "8K": | |
cost_per_1k_input_tokens = 0.03 | |
cost_per_1k_output_tokens = 0.06 | |
elif model == "GPT-4" and context_length == "32K": | |
cost_per_1k_input_tokens = 0.06 | |
cost_per_1k_output_tokens = 0.12 | |
elif model == "GPT-3.5" and context_length == "4K": | |
cost_per_1k_input_tokens = 0.0015 | |
cost_per_1k_output_tokens = 0.002 | |
else: | |
cost_per_1k_input_tokens = 0.003 | |
cost_per_1k_output_tokens = 0.004 | |
return cost_per_1k_input_tokens, cost_per_1k_output_tokens | |
self.model = gr.Dropdown(["GPT-4", "GPT-3.5 Turbo"], value="GPT-4", | |
label="OpenAI models", | |
interactive=True, visible=False) | |
self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True, | |
label="Context size", | |
visible=False, info="Number of tokens the model considers when processing text") | |
self.input_tokens_cost_per_second = gr.Number(0.03, visible=False, | |
label="($) Price/1K input prompt tokens", | |
interactive=False | |
) | |
self.output_tokens_cost_per_second = gr.Number(0.06, visible=False, | |
label="($) Price/1K output prompt tokens", | |
interactive=False | |
) | |
self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False) | |
self.model.change(on_model_change, inputs=self.model, outputs=self.context_length).then(define_cost_per_token, inputs=[self.model, self.context_length], outputs=[self.input_tokens_cost_per_second, self.output_tokens_cost_per_second]) | |
self.context_length.change(define_cost_per_token, inputs=[self.model, self.context_length], outputs=[self.input_tokens_cost_per_second, self.output_tokens_cost_per_second]) | |
self.labor = gr.Number(0, visible=False, | |
label="($) Labor cost per month", | |
info="This is how much it will cost you to have an engineer specialized in Machine Learning take care of the deployment of your model service", | |
interactive=True | |
) | |
def compute_cost_per_token(self, input_tokens_cost_per_second, output_tokens_cost_per_second, labor): | |
cost_per_input_token = (input_tokens_cost_per_second / 1000) | |
cost_per_output_token = (output_tokens_cost_per_second / 1000) | |
return cost_per_input_token, cost_per_output_token, labor | |
class OpenSourceLlama2Model(BaseTCOModel): | |
def __init__(self): | |
self.set_name("(Open source) Llama 2 70B") | |
self.set_formula(r"""$CR = \frac{CIT\_1K \times IT + COT\_1K \times OT}{1000}$ <br> | |
with: <br> | |
CR = Cost per Request <br> | |
CIT_1K = Cost per 1000 Input Tokens <br> | |
COT_1K = Cost per 1000 Output Tokens <br> | |
IT = Input Tokens <br> | |
OT = Output Tokens | |
""") | |
self.set_latency("27s") | |
super().__init__() | |
def render(self): | |
self.vm = gr.Textbox(value="2x A100 80GB NVLINK", | |
visible=False, | |
label="Instance of VM with GPU", | |
) | |
self.vm_cost_per_hour = gr.Number(2.21, label="VM instance cost ($) per hour", info="Note that this is the cost for a single VM instance, it is doubled in our case since two GPUs are needed", | |
interactive=False, visible=False) | |
self.input_tokens_cost_per_second = gr.Number(0.00052, visible=False, | |
label="($) Price/1K input prompt tokens", | |
interactive=False | |
) | |
self.output_tokens_cost_per_second = gr.Number(0.06656, visible=False, | |
label="($) Price/1K output prompt tokens", | |
interactive=False | |
) | |
self.info = gr.Markdown("For the Llama2-70B model, we took the cost per input and output tokens values from [these benchmark results](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False) | |
self.labor = gr.Number(10000, visible=False, | |
label="($) Labor cost per month", | |
info="This is how much it will cost you to have an engineer specialized in Machine Learning take care of the deployment of your model service", | |
interactive=True | |
) | |
# self.used = gr.Slider(minimum=0.01, value=30., step=0.01, label="% used", | |
# info="Percentage of time the GPU is used", | |
# interactive=True, | |
# visible=False) | |
def compute_cost_per_token(self, input_tokens_cost_per_second, output_tokens_cost_per_second, labor): | |
cost_per_input_token = (input_tokens_cost_per_second / 1000) | |
cost_per_output_token = (output_tokens_cost_per_second / 1000) | |
return cost_per_input_token, cost_per_output_token, labor | |
class CohereModel(BaseTCOModel): | |
def __init__(self): | |
self.set_name("(SaaS) Cohere") | |
self.set_formula(r"""$CR = \frac{CT\_1M \times (IT + OT)}{1000000}$ <br> | |
with: <br> | |
CR = Cost per Request <br> | |
CT_1M = Cost per one million Tokens (from Cohere's pricing web page) <br> | |
IT = Input Tokens <br> | |
OT = Output Tokens | |
""") | |
self.set_latency("") | |
super().__init__() | |
def render(self): | |
self.model = gr.Dropdown(["Default", "Custom"], value="Default", | |
label="Model", | |
interactive=True, visible=False) | |
if self.use_case == "Summarize": | |
self.model: gr.Dropdown.update(choices=["Default"]) | |
elif self.use_case == "Question-answering": | |
self.model: gr.Dropdown.update(choices=["Default", "Custom"]) | |
else: | |
self.model: gr.Dropdown.update(choices=["Default", "Custom"]) | |
self.labor = gr.Number(0, visible=False, | |
label="($) Labor cost per month", | |
info="This is how much it will cost you to have an engineer specialized in Machine Learning take care of the deployment of your model service", | |
interactive=True | |
) | |
def compute_cost_per_token(self, model, labor): | |
"""Cost per token = """ | |
use_case = self.use_case | |
if use_case == "Generate": | |
if model == "Default": | |
cost_per_1M_tokens = 15 | |
else: | |
cost_per_1M_tokens = 30 | |
elif use_case == "Summarize": | |
cost_per_1M_tokens = 15 | |
else: | |
cost_per_1M_tokens = 200 | |
cost_per_input_token = cost_per_1M_tokens / 1000000 | |
cost_per_output_token = cost_per_1M_tokens / 1000000 | |
return cost_per_input_token, cost_per_output_token, labor | |
class ModelPage: | |
def __init__(self, Models: BaseTCOModel): | |
self.models: list[BaseTCOModel] = [] | |
for Model in Models: | |
model = Model() | |
self.models.append(model) | |
def render(self): | |
for model in self.models: | |
model.render() | |
model.register_components_for_cost_computing() | |
def get_all_components(self) -> list[Component]: | |
output = [] | |
for model in self.models: | |
output += model.get_components() | |
return output | |
def get_all_components_for_cost_computing(self) -> list[Component]: | |
output = [] | |
for model in self.models: | |
output += model.get_components_for_cost_computing() | |
return output | |
def make_model_visible(self, name:str, use_case: gr.Dropdown): | |
# First decide which indexes | |
output = [] | |
for model in self.models: | |
if model.get_name() == name: | |
output+= [gr.update(visible=True)] * len(model.get_components()) | |
# Set use_case and num_users values in the model | |
model.use_case = use_case | |
else: | |
output+= [gr.update(visible=False)] * len(model.get_components()) | |
return output | |
def compute_cost_per_token(self, *args): | |
begin=0 | |
current_model = args[-3] | |
current_input_tokens = args[-2] | |
current_output_tokens = args[-1] | |
for model in self.models: | |
model_n_args = len(model.get_components_for_cost_computing()) | |
if current_model == model.get_name(): | |
model_args = args[begin:begin+model_n_args] | |
cost_per_input_token, cost_per_output_token, labor_cost = model.compute_cost_per_token(*model_args) | |
model_tco = cost_per_input_token * current_input_tokens + cost_per_output_token * current_output_tokens | |
formula = model.get_formula() | |
latency = model.get_latency() | |
return f"Model {current_model} has a cost/request of: ${model_tco:.5f}", model_tco, formula, f"The average latency of this model is {latency}", labor_cost | |
begin = begin+model_n_args |