Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -25,16 +25,17 @@ login(token=os.getenv('Token'))
|
|
25 |
|
26 |
import torch
|
27 |
|
28 |
-
device = torch.cuda.current_device()
|
29 |
-
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
30 |
-
total_memory = torch.cuda.get_device_properties(device).total_memory
|
31 |
-
allocated_memory = torch.cuda.memory_allocated(device)
|
32 |
-
reserved_memory = torch.cuda.memory_reserved(device)
|
33 |
|
34 |
-
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
35 |
-
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
36 |
-
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
37 |
|
|
|
38 |
name = 'flux-dev'
|
39 |
ae = load_ae(name, device)
|
40 |
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
@@ -129,14 +130,14 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
129 |
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
130 |
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
131 |
|
132 |
-
device = torch.cuda.current_device()
|
133 |
-
total_memory = torch.cuda.get_device_properties(device).total_memory
|
134 |
-
allocated_memory = torch.cuda.memory_allocated(device)
|
135 |
-
reserved_memory = torch.cuda.memory_reserved(device)
|
136 |
|
137 |
-
print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
138 |
-
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
139 |
-
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
140 |
|
141 |
with torch.no_grad():
|
142 |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
|
|
|
25 |
|
26 |
import torch
|
27 |
|
28 |
+
# device = torch.cuda.current_device()
|
29 |
+
# print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
30 |
+
# total_memory = torch.cuda.get_device_properties(device).total_memory
|
31 |
+
# allocated_memory = torch.cuda.memory_allocated(device)
|
32 |
+
# reserved_memory = torch.cuda.memory_reserved(device)
|
33 |
|
34 |
+
# print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
35 |
+
# print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
36 |
+
# print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
37 |
|
38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
name = 'flux-dev'
|
40 |
ae = load_ae(name, device)
|
41 |
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
|
|
130 |
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
131 |
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
132 |
|
133 |
+
# device = torch.cuda.current_device()
|
134 |
+
# total_memory = torch.cuda.get_device_properties(device).total_memory
|
135 |
+
# allocated_memory = torch.cuda.memory_allocated(device)
|
136 |
+
# reserved_memory = torch.cuda.memory_reserved(device)
|
137 |
|
138 |
+
# print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
139 |
+
# print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
140 |
+
# print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
141 |
|
142 |
with torch.no_grad():
|
143 |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
|