Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -126,8 +126,7 @@ class FluxEditor:
|
|
126 |
os.mkdir(self.feature_path)
|
127 |
|
128 |
with torch.no_grad():
|
129 |
-
self.t5, self.clip
|
130 |
-
inp = prepare(self.t5.cuda(), self.clip, init_image, prompt=opts.source_prompt)
|
131 |
inp_target = prepare(self.t5, self.clip, init_image, prompt=opts.target_prompt)
|
132 |
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))
|
133 |
|
@@ -139,14 +138,14 @@ class FluxEditor:
|
|
139 |
|
140 |
# inversion initial noise
|
141 |
with torch.no_grad():
|
142 |
-
z, info = denoise(self.model
|
143 |
|
144 |
inp_target["img"] = z
|
145 |
|
146 |
timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(self.name != "flux-schnell"))
|
147 |
|
148 |
# denoise initial noise
|
149 |
-
x, _ = denoise(self.model
|
150 |
|
151 |
# offload model, load autoencoder to gpu
|
152 |
if self.offload:
|
@@ -198,7 +197,7 @@ class FluxEditor:
|
|
198 |
|
199 |
|
200 |
|
201 |
-
def create_demo(model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu", offload: bool = False):
|
202 |
editor = FluxEditor(args)
|
203 |
is_schnell = model_name == "flux-schnell"
|
204 |
|
@@ -238,7 +237,7 @@ if __name__ == "__main__":
|
|
238 |
import argparse
|
239 |
parser = argparse.ArgumentParser(description="Flux")
|
240 |
parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name")
|
241 |
-
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use")
|
242 |
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
|
243 |
parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
|
244 |
|
|
|
126 |
os.mkdir(self.feature_path)
|
127 |
|
128 |
with torch.no_grad():
|
129 |
+
inp = prepare(self.t5, self.clip, init_image, prompt=opts.source_prompt)
|
|
|
130 |
inp_target = prepare(self.t5, self.clip, init_image, prompt=opts.target_prompt)
|
131 |
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))
|
132 |
|
|
|
138 |
|
139 |
# inversion initial noise
|
140 |
with torch.no_grad():
|
141 |
+
z, info = denoise(self.model, **inp, timesteps=timesteps, guidance=1, inverse=True, info=info)
|
142 |
|
143 |
inp_target["img"] = z
|
144 |
|
145 |
timesteps = get_schedule(opts.num_steps, inp_target["img"].shape[1], shift=(self.name != "flux-schnell"))
|
146 |
|
147 |
# denoise initial noise
|
148 |
+
x, _ = denoise(self.model, **inp_target, timesteps=timesteps, guidance=guidance, inverse=False, info=info)
|
149 |
|
150 |
# offload model, load autoencoder to gpu
|
151 |
if self.offload:
|
|
|
197 |
|
198 |
|
199 |
|
200 |
+
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False):
|
201 |
editor = FluxEditor(args)
|
202 |
is_schnell = model_name == "flux-schnell"
|
203 |
|
|
|
237 |
import argparse
|
238 |
parser = argparse.ArgumentParser(description="Flux")
|
239 |
parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name")
|
240 |
+
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
|
241 |
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
|
242 |
parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
|
243 |
|