Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -26,6 +26,7 @@ login(token=os.getenv('Token'))
|
|
26 |
import torch
|
27 |
|
28 |
device = torch.cuda.current_device()
|
|
|
29 |
total_memory = torch.cuda.get_device_properties(device).total_memory
|
30 |
allocated_memory = torch.cuda.memory_allocated(device)
|
31 |
reserved_memory = torch.cuda.memory_reserved(device)
|
@@ -34,6 +35,14 @@ print(f"Total memory: {total_memory / 1024**2:.2f} MB")
|
|
34 |
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
35 |
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
@dataclass
|
39 |
class SamplingOptions:
|
@@ -54,37 +63,8 @@ is_schnell = False
|
|
54 |
feature_path = 'feature'
|
55 |
output_dir = 'result'
|
56 |
add_sampling_metadata = True
|
57 |
-
# class FluxEditor:
|
58 |
-
# def __init__(self, args):
|
59 |
-
# self.args = args
|
60 |
-
# self.device = torch.device(args.device)
|
61 |
-
# self.offload = args.offload
|
62 |
-
# self.name = args.name
|
63 |
-
# self.is_schnell = args.name == "flux-schnell"
|
64 |
-
|
65 |
-
# self.feature_path = 'feature'
|
66 |
-
# self.output_dir = 'result'
|
67 |
-
# self.add_sampling_metadata = True
|
68 |
-
|
69 |
-
# if self.name not in configs:
|
70 |
-
# available = ", ".join(configs.keys())
|
71 |
-
# raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
72 |
-
|
73 |
-
# # init all components
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
# self.model.cpu()
|
78 |
-
# torch.cuda.empty_cache()
|
79 |
-
# self.ae.encoder.to(self.device)
|
80 |
-
ae = load_ae(name, device="cpu" if offload else device)
|
81 |
-
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
82 |
-
clip = load_clip(device)
|
83 |
-
model = load_flow_model(name, device="cpu" if offload else device)
|
84 |
-
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
85 |
-
print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device)
|
86 |
-
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
87 |
-
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
88 |
|
89 |
@torch.inference_mode()
|
90 |
def encode(init_image, torch_device, ae):
|
|
|
26 |
import torch
|
27 |
|
28 |
device = torch.cuda.current_device()
|
29 |
+
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
30 |
total_memory = torch.cuda.get_device_properties(device).total_memory
|
31 |
allocated_memory = torch.cuda.memory_allocated(device)
|
32 |
reserved_memory = torch.cuda.memory_reserved(device)
|
|
|
35 |
print(f"Allocated memory: {allocated_memory / 1024**2:.2f} MB")
|
36 |
print(f"Reserved memory: {reserved_memory / 1024**2:.2f} MB")
|
37 |
|
38 |
+
ae = load_ae(name, device)
|
39 |
+
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
40 |
+
clip = load_clip(device)
|
41 |
+
model = load_flow_model(name, device=device)
|
42 |
+
print("!!!!!!!!!!!!device!!!!!!!!!!!!!!",device)
|
43 |
+
print("!!!!!!!!self.t5!!!!!!",next(t5.parameters()).device)
|
44 |
+
print("!!!!!!!!self.clip!!!!!!",next(clip.parameters()).device)
|
45 |
+
print("!!!!!!!!self.model!!!!!!",next(model.parameters()).device)
|
46 |
|
47 |
@dataclass
|
48 |
class SamplingOptions:
|
|
|
63 |
feature_path = 'feature'
|
64 |
output_dir = 'result'
|
65 |
add_sampling_metadata = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
@torch.inference_mode()
|
70 |
def encode(init_image, torch_device, ae):
|