Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from typing import Callable | |
import torch | |
from einops import rearrange, repeat | |
from torch import Tensor | |
from .model import Flux | |
from .modules.conditioner import HFEmbedder | |
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]: | |
bs, c, h, w = img.shape | |
if bs == 1 and not isinstance(prompt, str): | |
bs = len(prompt) | |
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
if img.shape[0] == 1 and bs > 1: | |
img = repeat(img, "1 ... -> bs ...", bs=bs) | |
img_ids = torch.zeros(h // 2, w // 2, 3) | |
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
txt = t5(prompt) | |
if txt.shape[0] == 1 and bs > 1: | |
txt = repeat(txt, "1 ... -> bs ...", bs=bs) | |
txt_ids = torch.zeros(bs, txt.shape[1], 3) | |
print("!!!!!!!!!!!!opts.source_prompt!!!!!!!!!!!!",len(prompt)) | |
print("!!!!!!!!!!!!opts.source_prompt!!!!!!!!!!!!",prompt) | |
print("!!!!!!!!!!clip!!!!!!!!!",next(clip.parameters()).device) | |
print("!!!!!!!!!!!!clip model",clip) | |
vec = clip(prompt) | |
if vec.shape[0] == 1 and bs > 1: | |
vec = repeat(vec, "1 ... -> bs ...", bs=bs) | |
return { | |
"img": img, | |
"img_ids": img_ids.to(img.device), | |
"txt": txt.to(img.device), | |
"txt_ids": txt_ids.to(img.device), | |
"vec": vec.to(img.device), | |
} | |
def time_shift(mu: float, sigma: float, t: Tensor): | |
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
def get_lin_function( | |
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 | |
) -> Callable[[float], float]: | |
m = (y2 - y1) / (x2 - x1) | |
b = y1 - m * x1 | |
return lambda x: m * x + b | |
def get_schedule( | |
num_steps: int, | |
image_seq_len: int, | |
base_shift: float = 0.5, | |
max_shift: float = 1.15, | |
shift: bool = True, | |
) -> list[float]: | |
# extra step for zero | |
timesteps = torch.linspace(1, 0, num_steps + 1) | |
# shifting the schedule to favor high timesteps for higher signal images | |
if shift: | |
# estimate mu based on linear estimation between two points | |
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) | |
timesteps = time_shift(mu, 1.0, timesteps) | |
return timesteps.tolist() | |
def denoise( | |
model: Flux, | |
# model input | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
vec: Tensor, | |
# sampling parameters | |
timesteps: list[float], | |
inverse, | |
info, | |
guidance: float = 4.0 | |
): | |
# this is ignored for schnell | |
inject_list = [True] * info['inject_step'] + [False] * (len(timesteps[:-1]) - info['inject_step']) | |
if inverse: | |
timesteps = timesteps[::-1] | |
inject_list = inject_list[::-1] | |
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) | |
step_list = [] | |
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])): | |
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) | |
info['t'] = t_prev if inverse else t_curr | |
info['inverse'] = inverse | |
info['second_order'] = False | |
info['inject'] = inject_list[i] | |
pred, info = model( | |
img=img, | |
img_ids=img_ids, | |
txt=txt, | |
txt_ids=txt_ids, | |
y=vec, | |
timesteps=t_vec, | |
guidance=guidance_vec, | |
info=info | |
) | |
img_mid = img + (t_prev - t_curr) / 2 * pred | |
t_vec_mid = torch.full((img.shape[0],), (t_curr + (t_prev - t_curr) / 2), dtype=img.dtype, device=img.device) | |
info['second_order'] = True | |
pred_mid, info = model( | |
img=img_mid, | |
img_ids=img_ids, | |
txt=txt, | |
txt_ids=txt_ids, | |
y=vec, | |
timesteps=t_vec_mid, | |
guidance=guidance_vec, | |
info=info | |
) | |
first_order = (pred_mid - pred) / ((t_prev - t_curr) / 2) | |
img = img + (t_prev - t_curr) * pred + 0.5 * (t_prev - t_curr) ** 2 * first_order | |
return img, info | |
def unpack(x: Tensor, height: int, width: int) -> Tensor: | |
return rearrange( | |
x, | |
"b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
h=math.ceil(height / 16), | |
w=math.ceil(width / 16), | |
ph=2, | |
pw=2, | |
) | |