Spaces:
Runtime error
Runtime error
Madiharehan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,76 @@
|
|
1 |
-
# Import libraries
|
2 |
-
import whisper
|
3 |
import os
|
4 |
-
from gtts import gTTS
|
5 |
-
import gradio as gr
|
6 |
-
from groq import Groq
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
model = whisper.load_model("base")
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
client = Groq(api_key=Groq_api_key)
|
13 |
|
14 |
-
# Function to
|
15 |
-
def
|
|
|
|
|
|
|
|
|
|
|
16 |
chat_completion = client.chat.completions.create(
|
17 |
-
messages=[
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
return chat_completion.choices[0].message.content
|
21 |
|
22 |
-
# Function to convert text to speech
|
23 |
-
def text_to_speech(text
|
24 |
-
tts = gTTS(text)
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
#
|
29 |
def chatbot(audio):
|
30 |
-
# Step 1: Transcribe the audio
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
output_audio = text_to_speech(response_text)
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
# Gradio interface
|
43 |
iface = gr.Interface(
|
44 |
fn=chatbot,
|
45 |
-
inputs=gr.Audio(type="filepath"),
|
46 |
-
outputs=
|
|
|
|
|
47 |
live=True
|
48 |
)
|
49 |
|
50 |
-
# Launch the
|
51 |
iface.launch()
|
|
|
1 |
+
# Import necessary libraries
|
|
|
2 |
import os
|
|
|
|
|
|
|
3 |
|
4 |
+
# Install required libraries
|
5 |
+
try:
|
6 |
+
import whisper
|
7 |
+
import gtts
|
8 |
+
import gradio as gr
|
9 |
+
from groq import Groq
|
10 |
+
except ImportError:
|
11 |
+
os.system("pip install git+https://github.com/openai/whisper.git gtts gradio groq")
|
12 |
+
|
13 |
+
# Load Whisper model
|
14 |
model = whisper.load_model("base")
|
15 |
|
16 |
+
# Fetch the API key from the environment variable
|
17 |
+
Groq_api_key = os.getenv("GROQ_API_KEY")
|
18 |
+
|
19 |
+
# Check if the API key is set
|
20 |
+
if Groq_api_key is None:
|
21 |
+
raise ValueError("API key for Groq not found. Please set the 'GROQ_API_KEY' environment variable.")
|
22 |
+
|
23 |
+
# Initialize the Groq client
|
24 |
client = Groq(api_key=Groq_api_key)
|
25 |
|
26 |
+
# Function to transcribe audio
|
27 |
+
def transcribe_audio(audio_path):
|
28 |
+
result = model.transcribe(audio_path)
|
29 |
+
return result["text"]
|
30 |
+
|
31 |
+
# Function to get response from Groq's API
|
32 |
+
def get_groq_response(transcribed_text):
|
33 |
chat_completion = client.chat.completions.create(
|
34 |
+
messages=[
|
35 |
+
{
|
36 |
+
"role": "user",
|
37 |
+
"content": transcribed_text,
|
38 |
+
}
|
39 |
+
],
|
40 |
+
model="llama3-8b-8192",
|
41 |
)
|
42 |
return chat_completion.choices[0].message.content
|
43 |
|
44 |
+
# Function to convert text to speech
|
45 |
+
def text_to_speech(text):
|
46 |
+
tts = gtts.gTTS(text=text, lang='en')
|
47 |
+
audio_path = "response.mp3"
|
48 |
+
tts.save(audio_path)
|
49 |
+
return audio_path
|
50 |
|
51 |
+
# Gradio chatbot function
|
52 |
def chatbot(audio):
|
53 |
+
# Step 1: Transcribe the audio
|
54 |
+
transcribed_text = transcribe_audio(audio)
|
55 |
+
|
56 |
+
# Step 2: Get LLM response from Groq API
|
57 |
+
response_text = get_groq_response(transcribed_text)
|
58 |
+
|
59 |
+
# Step 3: Convert response text to speech
|
60 |
+
response_audio = text_to_speech(response_text)
|
|
|
61 |
|
62 |
+
# Return the response audio
|
63 |
+
return response_audio
|
64 |
|
65 |
+
# Create a Gradio interface
|
66 |
iface = gr.Interface(
|
67 |
fn=chatbot,
|
68 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
69 |
+
outputs="audio",
|
70 |
+
title="Voice-to-Voice Chatbot",
|
71 |
+
description="Speak to the chatbot and listen to the response!",
|
72 |
live=True
|
73 |
)
|
74 |
|
75 |
+
# Launch the interface
|
76 |
iface.launch()
|