Madiharehan's picture
Update app.py
fa5913d verified
import gradio as gr
from transformers import pipeline
# Load the pre-trained model (cached for performance)
def load_model():
return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')
sentiment_model = load_model()
# Define the function to analyze sentiment
def analyze_sentiment(user_input):
result = sentiment_model(user_input)[0]
sentiment = result['label'].lower() # Convert to lowercase for easier comparison
# Customize messages based on detected sentiment
if sentiment == 'negative':
return "Mood Detected: Negative πŸ˜”\n\nStay positive! 🌟 Remember, tough times don't last, but tough people do!"
elif sentiment == 'neutral':
return "Mood Detected: Neutral 😐\n\nIt's good to reflect on steady days. Keep your goals in mind, and stay motivated!"
elif sentiment == 'positive':
return "Mood Detected: Positive 😊\n\nYou're on the right track! Keep shining! 🌞"
else:
return "Mood Detected: Unknown πŸ€”\n\nKeep going, you're doing great!"
# Gradio UI
def chatbot_ui():
# Define the interface
interface = gr.Interface(
fn=analyze_sentiment,
inputs=gr.Textbox(label="Enter your text here:"),
outputs=gr.Textbox(label="Motivational Message"),
title="Student Sentiment Analysis Chatbot",
description="This chatbot detects your mood and provides positive or motivational messages."
)
return interface
# Launch the interface
if __name__ == "__main__":
chatbot_ui().launch()