Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import requests | |
| import torch | |
| from PIL import Image | |
| from transformers import MllamaForConditionalGeneration, AutoProcessor | |
| from huggingface_hub import login | |
| import io | |
| # Authenticate with Hugging Face | |
| HF_TOKEN = st.secrets["newfinegrained"] | |
| login(HF_TOKEN) | |
| def load_model_and_processor(model_id): | |
| """Load the model and processor.""" | |
| model = MllamaForConditionalGeneration.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto" | |
| ) | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| return model, processor | |
| def generate_text(model, processor, image_url, prompt): | |
| """Generate text using the model and processor.""" | |
| try: | |
| # Fetch the image from the URL | |
| response = requests.get(image_url) | |
| response.raise_for_status() # Raise an error for invalid response | |
| # Validate content type | |
| if "image" not in response.headers["Content-Type"]: | |
| return "Error: The provided URL does not point to a valid image." | |
| # Open the image | |
| image = Image.open(io.BytesIO(response.content)) | |
| # Process the image and prompt | |
| inputs = processor(image, prompt, return_tensors="pt").to(model.device) | |
| output = model.generate(**inputs, max_new_tokens=30) | |
| # Decode the output | |
| return processor.decode(output[0]) | |
| except Exception as e: | |
| return f"Error: {e}" | |
| # Streamlit App | |
| st.title("LLaMA 3.2 Vision") | |
| # Model ID and loading | |
| MODEL_ID = "meta-llama/Llama-3.2-11B-Vision" | |
| model, processor = load_model_and_processor(MODEL_ID) | |
| # User input for image URL and prompt | |
| image_url = st.text_input( | |
| "Enter the Image URL:", | |
| "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" | |
| ) | |
| prompt = st.text_area( | |
| "Enter your prompt:", | |
| "<|image|><|begin_of_text|>If I had to write a haiku for this one" | |
| ) | |
| # Button to generate haiku | |
| if st.button("Generate Text"): | |
| with st.spinner("Generating Text..."): | |
| result = generate_text(model, processor, image_url, prompt) | |
| st.subheader("Generated Text") | |
| st.write(result) | |
| try: | |
| st.image(image_url, caption="Input Image") | |
| except Exception: | |
| st.error("Failed to load image. Please check the URL.") | |