Spaces:
Runtime error
Runtime error
BertChristiaens
commited on
Commit
•
5981c2d
1
Parent(s):
1c669b7
add docs
Browse files- .gitattributes +1 -0
- app.py +9 -2
- explanation.py +22 -1
.gitattributes
CHANGED
@@ -42,3 +42,4 @@ content/example_1.jpg filter=lfs diff=lfs merge=lfs -text
|
|
42 |
content/output_0.png filter=lfs diff=lfs merge=lfs -text
|
43 |
content/output_1.png filter=lfs diff=lfs merge=lfs -text
|
44 |
content/Schermafbeelding[[:space:]]2023-05-05[[:space:]]om[[:space:]]14.29.39.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
42 |
content/output_0.png filter=lfs diff=lfs merge=lfs -text
|
43 |
content/output_1.png filter=lfs diff=lfs merge=lfs -text
|
44 |
content/Schermafbeelding[[:space:]]2023-05-05[[:space:]]om[[:space:]]14.29.39.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
content/* filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -284,7 +284,7 @@ def main():
|
|
284 |
"in almost 30 design styles. After fetching all these images, we started adding metadata such as "
|
285 |
"captions (from the BLIP captioning model) and segmentation maps (from the HuggingFace UperNetForSemanticSegmentation model). "
|
286 |
)
|
287 |
-
st.write("For the gathering and inference of the metadata we used the Fondant framework (https://github.com/ml6team/fondant)
|
288 |
"data centric framework for data preparation. The pipeline used for training this controlnet will soon be available as an "
|
289 |
"example pipeline within Fondant and can be easily adapted for building your own dataset."
|
290 |
)
|
@@ -322,6 +322,7 @@ def main():
|
|
322 |
|
323 |
st.session_state['example_image_0'] = Image.open("content/example_0.png")
|
324 |
st.session_state['example_image_1'] = Image.open("content/example_1.jpg")
|
|
|
325 |
|
326 |
col_im_0, col_im_1 = st.columns(2)
|
327 |
|
@@ -329,6 +330,10 @@ def main():
|
|
329 |
st.image(st.session_state['example_image_0'], caption="Example image 1", use_column_width=True)
|
330 |
if st.button("Use example 1"):
|
331 |
move_image('example_image_0', 'initial_image', remove_state=True, rerun=True)
|
|
|
|
|
|
|
|
|
332 |
with col_im_1:
|
333 |
st.image(st.session_state['example_image_1'], caption="Example image 2", use_column_width=True)
|
334 |
if st.button("Use example 2"):
|
@@ -367,4 +372,6 @@ def main():
|
|
367 |
make_output_image()
|
368 |
|
369 |
if __name__ == "__main__":
|
370 |
-
main()
|
|
|
|
|
|
284 |
"in almost 30 design styles. After fetching all these images, we started adding metadata such as "
|
285 |
"captions (from the BLIP captioning model) and segmentation maps (from the HuggingFace UperNetForSemanticSegmentation model). "
|
286 |
)
|
287 |
+
st.write("For the gathering and inference of the metadata we used the Fondant framework (https://github.com/ml6team/fondant) provided by ML6 (https://www.ml6.eu/), which is an open source "
|
288 |
"data centric framework for data preparation. The pipeline used for training this controlnet will soon be available as an "
|
289 |
"example pipeline within Fondant and can be easily adapted for building your own dataset."
|
290 |
)
|
|
|
322 |
|
323 |
st.session_state['example_image_0'] = Image.open("content/example_0.png")
|
324 |
st.session_state['example_image_1'] = Image.open("content/example_1.jpg")
|
325 |
+
st.session_state['example_image_2'] = Image.open("content/example_2.jpg")
|
326 |
|
327 |
col_im_0, col_im_1 = st.columns(2)
|
328 |
|
|
|
330 |
st.image(st.session_state['example_image_0'], caption="Example image 1", use_column_width=True)
|
331 |
if st.button("Use example 1"):
|
332 |
move_image('example_image_0', 'initial_image', remove_state=True, rerun=True)
|
333 |
+
|
334 |
+
st.image(st.session_state['example_image_2'], caption="Example image 3", use_column_width=True)
|
335 |
+
if st.button("Use example 2"):
|
336 |
+
move_image('example_image_2', 'initial_image', remove_state=True, rerun=True)
|
337 |
with col_im_1:
|
338 |
st.image(st.session_state['example_image_1'], caption="Example image 2", use_column_width=True)
|
339 |
if st.button("Use example 2"):
|
|
|
372 |
make_output_image()
|
373 |
|
374 |
if __name__ == "__main__":
|
375 |
+
main()
|
376 |
+
|
377 |
+
|
explanation.py
CHANGED
@@ -27,4 +27,25 @@ def make_regeneration_explanation():
|
|
27 |
st.image("content/regen_example.png", caption="Room where all concepts except for 'bed', 'lamp', 'table' are regenerated")
|
28 |
|
29 |
def make_segmentation_explanation():
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
st.image("content/regen_example.png", caption="Room where all concepts except for 'bed', 'lamp', 'table' are regenerated")
|
28 |
|
29 |
def make_segmentation_explanation():
|
30 |
+
with st.expander("Segmentation mode", expanded=False):
|
31 |
+
st.write("In the segmentation mode, the user can use his imagination and the paint brush to place concepts in the image. "
|
32 |
+
"In the left sidebar, you can first find the high level category of the concept you want to add, such as 'lighting', 'floor', .. "
|
33 |
+
"After selecting the category, you can select the specific concept you want to add in the 'Choose a color' dropdown. "
|
34 |
+
"This will change the color of the paint brush, which you can then use to draw on the input image. "
|
35 |
+
"The model will then regenerate the image with the concepts you have drawn and leave the rest of the image unchanged. "
|
36 |
+
)
|
37 |
+
st.image("content/sidebar segmentation.png", caption="Sidebar with segmentation options", width=300)
|
38 |
+
st.write("You can choose the freedraw mode which gives you a pencil of a certain (chosen) width or the polygon mode. With the polygon mode you can click to add a point to the polygon and close the polygon by right clicking. ")
|
39 |
+
st.write("Important: "
|
40 |
+
"it's not easy to draw a good segmentation mask. This is because you need to keep in mind the perspective of the room and the exact "
|
41 |
+
"shape of the object you want to draw within this perspective. Controlnet will follow your segmentation mask pretty well, so "
|
42 |
+
"a non-natural object shape will sometimes result in weird outputs. However, give it a try and see what you can do! "
|
43 |
+
)
|
44 |
+
st.image("content/segmentation window.png", caption="Example of a segmentation mask drawn on the input image to add a window to the room")
|
45 |
+
st.write("Tip: ")
|
46 |
+
st.write("In the concepts dropdown, you can select 'keep background' (which is a white color). Everything drawn in this color will use "
|
47 |
+
"the original underlying segmentation mask. This can be useful to help with generating other objects, since you give the model a some "
|
48 |
+
"freedom to generate outside the object borders."
|
49 |
+
)
|
50 |
+
st.image("content/keep background 1.png", caption="Image with a poster drawn on the wall.")
|
51 |
+
st.image("content/keep background 2.png", caption="Image with a poster drawn on the wall surrounded by 'keep background'.")
|