Maddy90's picture
Update app.py
c88c1f5 verified
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load model and tokenizer
model_name = "google/flan-t5-large" # You can use "google/flan-t5-xl" for better results if you have more computational resources
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def generate_blog_post(topic, max_length=1000):
prompt = f"Write a detailed blog post about {topic}. The blog post should be informative, engaging, and well-structured."
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# Streamlit interface
st.title("Blog Post Generator")
topic = st.text_input("Enter a topic for your blog post:")
max_length = st.slider("Maximum length of the blog post", min_value=100, max_value=1000, value=500, step=50)
generate_button = st.button("Generate Blog Post")
if generate_button and topic:
with st.spinner("Generating blog post... This may take a moment."):
blog_post = generate_blog_post(topic, max_length)
# Display the generated blog post
st.subheader("Generated Blog Post")
st.write(blog_post)
st.sidebar.title("About")
st.sidebar.info(
"This app generates a blog post on a given topic using a large language model. "
"Enter a topic and click 'Generate Blog Post' to create your content."
)