Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load model and tokenizer | |
model_name = "google/flan-t5-large" # You can use "google/flan-t5-xl" for better results if you have more computational resources | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
def generate_blog_post(topic, max_length=1000): | |
prompt = f"Write a detailed blog post about {topic}. The blog post should be informative, engaging, and well-structured." | |
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True) | |
outputs = model.generate( | |
inputs.input_ids, | |
max_length=max_length, | |
num_return_sequences=1, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
temperature=0.7, | |
) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
# Streamlit interface | |
st.title("Blog Post Generator") | |
topic = st.text_input("Enter a topic for your blog post:") | |
max_length = st.slider("Maximum length of the blog post", min_value=100, max_value=1000, value=500, step=50) | |
generate_button = st.button("Generate Blog Post") | |
if generate_button and topic: | |
with st.spinner("Generating blog post... This may take a moment."): | |
blog_post = generate_blog_post(topic, max_length) | |
# Display the generated blog post | |
st.subheader("Generated Blog Post") | |
st.write(blog_post) | |
st.sidebar.title("About") | |
st.sidebar.info( | |
"This app generates a blog post on a given topic using a large language model. " | |
"Enter a topic and click 'Generate Blog Post' to create your content." | |
) |