Spaces:
Runtime error
Runtime error
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| from glob import glob | |
| from typing import Optional, Tuple | |
| from PIL import Image | |
| from gradio_imageslider import ImageSlider | |
| from transformers import AutoModelForImageSegmentation | |
| from torchvision import transforms | |
| import requests | |
| from io import BytesIO | |
| torch.set_float32_matmul_precision('high') | |
| torch.jit.script = lambda f: f | |
| device = "cuda" if torch.cuda.is_available() else "CPU" | |
| def array_to_pil_image(image: np.ndarray, size: Tuple[int, int] = (1024, 1024)) -> Image.Image: | |
| image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) | |
| image = Image.fromarray(image).convert('RGB') | |
| return image | |
| class ImagePreprocessor(): | |
| def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: | |
| self.transform_image = transforms.Compose([ | |
| # transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image() | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ]) | |
| def proc(self, image: Image.Image) -> torch.Tensor: | |
| image = self.transform_image(image) | |
| return image | |
| usage_to_weights_file = { | |
| 'General': 'BiRefNet', | |
| 'General-Lite': 'BiRefNet_lite', | |
| 'Portrait': 'BiRefNet-portrait', | |
| 'DIS': 'BiRefNet-DIS5K', | |
| 'HRSOD': 'BiRefNet-HRSOD', | |
| 'COD': 'BiRefNet-COD', | |
| 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs', | |
| 'General-legacy': 'BiRefNet-legacy' | |
| } | |
| birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True) | |
| birefnet.to(device) | |
| birefnet.eval() | |
| # for idx, image_path in enumerate(images): | |
| # im = load_img(image_path, output_type="pil") | |
| # if im is None: | |
| # continue | |
| # im = im.convert("RGB") | |
| # image_size = im.size | |
| # input_images = transform_image(im).unsqueeze(0).to("cpu") | |
| # with torch.no_grad(): | |
| # preds = birefnet(input_images)[-1].sigmoid().cpu() | |
| # pred = preds[0].squeeze() | |
| # pred_pil = transforms.ToPILImage()(pred) | |
| # mask = pred_pil.resize(image_size) | |
| # im.putalpha(mask) | |
| # output_file_path = os.path.join(save_dir, f"output_image_batch_{idx + 1}.png") | |
| # im.save(output_file_path) | |
| # output_paths.append(output_file_path) | |
| # zip_file_path = os.path.join(save_dir, "processed_images.zip") | |
| # with zipfile.ZipFile(zip_file_path, 'w') as zipf: | |
| # for file in output_paths: | |
| # zipf.write(file, os.path.basename(file)) | |
| # return output_paths, zip_file_path | |
| def predict(images, resolution, weights_file): | |
| assert (images is not None), 'AssertionError: images cannot be None.' | |
| global birefnet | |
| # Load BiRefNet with chosen weights | |
| _weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General'])) | |
| print('Using weights: {}.'.format(_weights_file)) | |
| birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True) | |
| birefnet.to(device) | |
| birefnet.eval() | |
| try: | |
| resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] | |
| except: | |
| resolution = [1024, 1024] | |
| print('Invalid resolution input. Automatically changed to 1024x1024.') | |
| if isinstance(images, list): | |
| # For tab_batch | |
| save_paths = [] | |
| save_dir = 'preds-BiRefNet' | |
| if not os.path.exists(save_dir): | |
| os.makedirs(save_dir) | |
| tab_is_batch = True | |
| else: | |
| images = [images] | |
| tab_is_batch = False | |
| for idx_image, image_src in enumerate(images): | |
| if isinstance(image_src, str): | |
| response = requests.get(image_src) | |
| image_data = BytesIO(response.content) | |
| image = np.array(Image.open(image_data)) | |
| else: | |
| image = image_src | |
| image_shape = image.shape[:2] | |
| image_pil = array_to_pil_image(image, tuple(resolution)) | |
| # Preprocess the image | |
| image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) | |
| image_proc = image_preprocessor.proc(image_pil) | |
| image_proc = image_proc.unsqueeze(0) | |
| # Perform the prediction | |
| with torch.no_grad(): | |
| scaled_pred_tensor = birefnet(image_proc.to(device))[-1].sigmoid() | |
| if device == 'cuda': | |
| scaled_pred_tensor = scaled_pred_tensor.cpu() | |
| # Resize the prediction to match the original image shape | |
| pred = torch.nn.functional.interpolate(scaled_pred_tensor, size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy() | |
| # Apply the prediction mask to the original image | |
| image_pil = image_pil.resize(pred.shape[::-1]) | |
| pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1) | |
| image_pred = (pred * np.array(image_pil)).astype(np.uint8) | |
| torch.cuda.empty_cache() | |
| if tab_is_batch: | |
| save_file_path = os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0])) | |
| cv2.imwrite(save_file_path) | |
| save_paths.append(save_file_path) | |
| if tab_is_batch: | |
| zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir)) | |
| with zipfile.ZipFile(zip_file_path, 'w') as zipf: | |
| for file in save_paths: | |
| zipf.write(file, os.path.basename(file)) | |
| return image, image_pred | |
| examples = [[_] for _ in glob('examples/*')][:] | |
| # Add the option of resolution in a text box. | |
| for idx_example, example in enumerate(examples): | |
| examples[idx_example].append('1024x1024') | |
| examples.append(examples[-1].copy()) | |
| examples[-1][1] = '512x512' | |
| examples_url = [ | |
| ['https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg'], | |
| ] | |
| for idx_example_url, example_url in enumerate(examples_url): | |
| examples_url[idx_example_url].append('1024x1024') | |
| descriptions = ('Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n)' | |
| ' The resolution used in our training was `1024x1024`, thus the suggested resolution to obtain good results!\n' | |
| ' Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n' | |
| ' We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.') | |
| tab_image = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Image(label='Upload an image'), | |
| gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`. Higher resolutions can be much slower for inference.", label="Resolution"), | |
| gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") | |
| ], | |
| outputs=ImageSlider(label="BiRefNet's prediction", type="pil"), | |
| examples=examples, | |
| api_name="image", | |
| description=descriptions, | |
| ) | |
| tab_text = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Textbox(label="Paste an image URL"), | |
| gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`. Higher resolutions can be much slower for inference.", label="Resolution"), | |
| gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") | |
| ], | |
| outputs=ImageSlider(label="BiRefNet's prediction", type="pil"), | |
| examples=examples_url, | |
| api_name="text", | |
| description=descriptions+'\nTab-URL is partially modified from https://huggingface.co/spaces/not-lain/background-removal, thanks to this great work!', | |
| ) | |
| tab_batch = gr.Interface( | |
| fn=predict, | |
| inputs=gr.File(label="Upload multiple images", type="filepath", file_count="multiple"), | |
| outputs=[gr.Gallery(label="BiRefNet's predictions"), gr.File(label="Download masked images.")], | |
| api_name="batch", | |
| description=descriptions+'\nTab-batch is partially modified from https://huggingface.co/spaces/NegiTurkey/Multi_Birefnetfor_Background_Removal, thanks to this great work!', | |
| ) | |
| demo = gr.TabbedInterface( | |
| [tab_image, tab_text, tab_batch], | |
| ['image', 'text', 'batch'], | |
| title="BiRefNet demo for subject extraction (general / salient / camouflaged / portrait).", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(debug=True) | |