SummarizerTool / app.py
MaawaKhalid's picture
Create app.py
dee7fc8 verified
raw
history blame contribute delete
756 Bytes
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the tokenizer and model
model_checkpoint = "google/mt5-small"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
def summarize(text):
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
outputs = model.generate(inputs, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
iface = gr.Interface(fn=summarize, inputs="text", outputs="text", title="Text Summarizer", description="Summarize any text using the mT5 model.")
iface.launch()