AI_TalkingFlower / presets.py
MZhao-LEGION
try to fix nltk bugs
7c2c5f5
raw
history blame
5.26 kB
import os, logging, datetime, json, random
import gradio as gr
import numpy as np
import torch
import re_matching
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
from config import config
from tools.webui import reload_javascript, get_character_html
logging.basicConfig(
level=logging.INFO,
format='[%(levelname)s|%(asctime)s]%(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
device = config.webui_config.device
if device == "mps":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
hps = utils.get_hparams_from_file(config.webui_config.config_path)
version = hps.version if hasattr(hps, "version") else latest_version
net_g = get_net_g(model_path=config.webui_config.model, version=version, device=device, hps=hps)
with open("./css/style.css", "r", encoding="utf-8") as f:
customCSS = f.read()
with open("./assets/lines.json", "r", encoding="utf-8") as f:
full_lines = json.load(f)
def speak_fn(
text: str,
exceed_flag,
speaker="TalkFlower_CNzh",
sdp_ratio=0.2, # SDP/DP混合比
noise_scale=0.6, # 感情
noise_scale_w=0.6, # 音素长度
length_scale=0.9, # 语速
language="ZH",
reference_audio=None,
emotion=4,
interval_between_para=0.2, # 段间间隔
interval_between_sent=1, # 句间间隔
):
while text.find("\n\n") != -1:
text = text.replace("\n\n", "\n")
if len(text) > 100:
logging.info(f"Too Long Text: {text}")
if exceed_flag:
text = "不要超过100字!"
audio_value = "./assets/audios/nomorethan100.wav"
else:
text = "这句太长了,憋坏我啦!"
audio_value = "./assets/audios/overlength.wav"
exceed_flag = not exceed_flag
else:
audio_list = []
if len(text) > 42:
logging.info(f"Long Text: {text}")
para_list = re_matching.cut_para(text)
for p in para_list:
audio_list_sent = []
sent_list = re_matching.cut_sent(p)
for s in sent_list:
audio = infer(
s,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
reference_audio=reference_audio,
emotion=emotion,
)
audio_list_sent.append(audio)
silence = np.zeros((int)(44100 * interval_between_sent))
audio_list_sent.append(silence)
if (interval_between_para - interval_between_sent) > 0:
silence = np.zeros((int)(44100 * (interval_between_para - interval_between_sent)))
audio_list_sent.append(silence)
audio16bit = gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_list_sent)) # 对完整句子做音量归一
audio_list.append(audio16bit)
else:
logging.info(f"Short Text: {text}")
silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
with torch.no_grad():
for piece in text.split("|"):
audio = infer(
piece,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
reference_audio=reference_audio,
emotion=emotion,
)
audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
audio_list.append(audio16bit)
audio_list.append(silence) # 将静音添加到列表中
audio_concat = np.concatenate(audio_list)
audio_value = (hps.data.sampling_rate, audio_concat)
return gr.update(value=audio_value, autoplay=True), get_character_html(text), exceed_flag, gr.update(interactive=True)
def submit_lock_fn():
return gr.update(interactive=False)
def init_fn():
gr.Info("2023-11-24: 优化长句生成效果;增加示例;更新了一些小彩蛋;画了一些大饼)")
gr.Info("Only support Chinese now. Trying to train a mutilingual model. 欢迎在 Community 中提建议~")
index = random.randint(1,7)
welcome_text = get_sentence("Welcome", index)
return get_character_html(welcome_text) #gr.update(value=f"./assets/audios/Welcome{index}.wav", autoplay=False),
def get_sentence(category, index=-1):
if index == -1:
index = random.randint(1, len(full_lines[category]))
return full_lines[category][f"{index}"]