MZhaovo's picture
Upload folder using huggingface_hub
8f472c2
raw
history blame
5.26 kB
import gradio as gr
import numpy as np
import torch
import os
import re_matching
from tools.sentence import split_by_language, sentence_split
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
import webbrowser
from config import config
from tools.translate import translate
from tools.webui import reload_javascript
device = config.webui_config.device
if device == "mps":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
def speak_fn(
text: str,
exceed_flag,
speaker="TalkFlower_CNzh",
sdp_ratio=0.2, # SDP/DP混合比
noise_scale=0.6, # 感情
noise_scale_w=0.6, # 音素长度
length_scale=0.9, # 语速
language="ZH",
interval_between_para=0.2, # 段间间隔
interval_between_sent=1, # 句间间隔
):
while text.find("\n\n") != -1:
text = text.replace("\n\n", "\n")
if len(text) > 100:
print(f"Too Long Text: {text}")
gr.Warning("Too long! No more than 100 characters. 一口气不要超过 100 个字,憋坏我了。")
if exceed_flag:
return gr.update(value="./assets/audios/nomorethan100.wav", autoplay=True), False
else:
return gr.update(value="./assets/audios/overlength.wav", autoplay=True), True
audio_list = []
if len(text) > 42:
print(f"Long Text: {text}")
para_list = re_matching.cut_para(text)
for p in para_list:
audio_list_sent = []
sent_list = re_matching.cut_sent(p)
for s in sent_list:
audio = infer(
s,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
)
audio_list_sent.append(audio)
silence = np.zeros((int)(44100 * interval_between_sent))
audio_list_sent.append(silence)
if (interval_between_para - interval_between_sent) > 0:
silence = np.zeros(
(int)(44100 * (interval_between_para - interval_between_sent))
)
audio_list_sent.append(silence)
audio16bit = gr.processing_utils.convert_to_16_bit_wav(
np.concatenate(audio_list_sent)
) # 对完整句子做音量归一
audio_list.append(audio16bit)
else:
print(f"Short Text: {text}")
silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
with torch.no_grad():
for piece in text.split("|"):
audio = infer(
piece,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
)
audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
audio_list.append(audio16bit)
audio_list.append(silence) # 将静音添加到列表中
audio_concat = np.concatenate(audio_list)
return (hps.data.sampling_rate, audio_concat), exceed_flag
def init_fn():
gr.Info("2023-11-24: 优化长句生成效果;更新了一些小彩蛋。")
gr.Info("2023-11-23: Only support Chinese now. Trying to train a mutilingual model.")
with open("./css/style.css", "r", encoding="utf-8") as f:
customCSS = f.read()
with gr.Blocks(css=customCSS) as demo:
exceed_flag = gr.State(value=False)
talkingFlowerPic = gr.HTML("""<img src="file=assets/flower-2x.webp" alt="TalkingFlowerPic">""", elem_id="talking_flower_pic")
input_text = gr.Textbox(lines=1, label="Talking Flower will say:", elem_classes="wonder-card", elem_id="input_text")
speak_button = gr.Button("Speak!", elem_id="comfirm_button", elem_classes="button wonder-card")
audio_output = gr.Audio(label="输出音频", show_label=False, autoplay=True, elem_id="audio_output", elem_classes="wonder-card")
demo.load(
init_fn,
inputs=[],
outputs=[]
)
input_text.submit(
speak_fn,
inputs=[input_text, exceed_flag],
outputs=[audio_output, exceed_flag],
)
speak_button.click(
speak_fn,
inputs=[input_text, exceed_flag],
outputs=[audio_output, exceed_flag],
)
if __name__ == "__main__":
hps = utils.get_hparams_from_file(config.webui_config.config_path)
version = hps.version if hasattr(hps, "version") else latest_version
net_g = get_net_g(model_path=config.webui_config.model, version=version, device=device, hps=hps)
reload_javascript()
demo.queue().launch(
allowed_paths=["./assets"],
show_api=False,
# server_name=server_name,
# server_port=server_port,
inbrowser=True,
)