Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
from gtts import gTTS
|
5 |
+
import gradio as gr
|
6 |
+
from groq import Groq
|
7 |
+
|
8 |
+
# Load Whisper model from Hugging Face
|
9 |
+
try:
|
10 |
+
pipe = pipeline(model="openai/whisper-small", device="cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
except Exception as e:
|
12 |
+
print(f"Error loading Whisper model: {e}")
|
13 |
+
raise
|
14 |
+
|
15 |
+
GROQ_API_KEY = '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'
|
16 |
+
|
17 |
+
Client = Groq(api_key=GROQ_API_KEY)
|
18 |
+
|
19 |
+
# Function to get response from Groq LLM
|
20 |
+
def get_llm_response(transcribed_text):
|
21 |
+
try:
|
22 |
+
chat_completion = client.chat.completions.create(
|
23 |
+
messages=[{"role": "user", "content": transcribed_text}],
|
24 |
+
model="llama3-8b-8192",
|
25 |
+
)
|
26 |
+
return chat_completion.choices[0].message.content
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error getting response from LLM: {e}")
|
29 |
+
return "Sorry, I couldn't process your request."
|
30 |
+
|
31 |
+
# Function to convert text to speech
|
32 |
+
def text_to_speech(response_text):
|
33 |
+
try:
|
34 |
+
tts = gTTS(response_text, lang='en')
|
35 |
+
tts.save("response_audio.mp3")
|
36 |
+
return "response_audio.mp3" # Returning the file path
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Error converting text to speech: {e}")
|
39 |
+
return "Sorry, I couldn't convert the response to audio."
|
40 |
+
|
41 |
+
# Function to handle the entire voice chat process
|
42 |
+
def voice_chat(audio_input):
|
43 |
+
try:
|
44 |
+
# Transcribe the input audio using Hugging Face Whisper model
|
45 |
+
result = pipe(audio_input)["text"]
|
46 |
+
transcribed_text = result
|
47 |
+
print(f"Transcribed Text: {transcribed_text}")
|
48 |
+
|
49 |
+
# Get the LLM response
|
50 |
+
response_text = get_llm_response(transcribed_text)
|
51 |
+
print(f"LLM Response: {response_text}")
|
52 |
+
|
53 |
+
# Convert the response text to speech and return the audio file
|
54 |
+
response_audio = text_to_speech(response_text)
|
55 |
+
|
56 |
+
return response_audio
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error in voice chat process: {e}")
|
59 |
+
return "Sorry, there was an error processing your audio."
|
60 |
+
|
61 |
+
# Create the Gradio interface
|
62 |
+
iface = gr.Interface(
|
63 |
+
fn=voice_chat,
|
64 |
+
inputs=gr.Audio(type="filepath"), # Specify input type only
|
65 |
+
outputs="audio"
|
66 |
+
)
|
67 |
+
|
68 |
+
# Launch the Gradio interface
|
69 |
+
iface.launch()
|