Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
depth_estimator = pipeline(task="depth-estimation", | |
model="Intel/dpt-hybrid-midas") | |
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from transformers import Pipeline | |
def launch(input_image): | |
out = depth_estimator(input_image) | |
# resize the prediction | |
prediction = torch.nn.functional.interpolate( | |
out["predicted_depth"].unsqueeze(1), | |
size=input_image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
) | |
# normalize the prediction | |
output = prediction.squeeze().numpy() | |
formatted = (output * 255 / np.max(output)).astype("uint8") | |
depth = Image.fromarray(formatted) | |
return depth | |
iface = gr.Interface(launch, | |
inputs=[gr.Image(label="Upload image", type="pil")], | |
outputs=[gr.Image(label="Depth Map", type="pil")], | |
title="DepthSense", | |
description="Dive into the unseen depths of your images! Simply upload and let DepthSense reveal a whole new dimension of your visuals, instantly" ) | |
iface.launch() |