Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -57,7 +57,7 @@ for train_index, test_index in cv.split(x1, y1):
|
|
57 |
x1_train_fold, y1_train_fold = resampler.fit_resample(x1_train_fold, y1_train_fold)
|
58 |
y1_model = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)
|
59 |
y1_model.fit(x1_train_fold, y1_train_fold, overwrite_warning=True)
|
60 |
-
y1_calib_model = CalibratedClassifierCV(
|
61 |
y1_calib_model.fit(x1_valid_fold, y1_valid_fold)
|
62 |
|
63 |
for train_index, test_index in cv.split(x2, y2):
|
@@ -66,7 +66,7 @@ for train_index, test_index in cv.split(x2, y2):
|
|
66 |
x2_train_fold, y2_train_fold = resampler.fit_resample(x2_train_fold, y2_train_fold)
|
67 |
y2_model = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)
|
68 |
y2_model.fit(x2_train_fold, y2_train_fold, overwrite_warning=True)
|
69 |
-
y2_calib_model = CalibratedClassifierCV(
|
70 |
y2_calib_model.fit(x2_valid_fold, y2_valid_fold)
|
71 |
|
72 |
for train_index, test_index in cv.split(x3, y3):
|
@@ -75,7 +75,7 @@ for train_index, test_index in cv.split(x3, y3):
|
|
75 |
x3_train_fold, y3_train_fold = resampler.fit_resample(x3_train_fold, y3_train_fold)
|
76 |
y3_model = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)
|
77 |
y3_model.fit(x3_train_fold, y3_train_fold, overwrite_warning=True)
|
78 |
-
y3_calib_model = CalibratedClassifierCV(
|
79 |
y3_calib_model.fit(x3_valid_fold, y3_valid_fold)
|
80 |
|
81 |
|
|
|
57 |
x1_train_fold, y1_train_fold = resampler.fit_resample(x1_train_fold, y1_train_fold)
|
58 |
y1_model = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)
|
59 |
y1_model.fit(x1_train_fold, y1_train_fold, overwrite_warning=True)
|
60 |
+
y1_calib_model = CalibratedClassifierCV(y1_model, method='isotonic', cv='prefit')
|
61 |
y1_calib_model.fit(x1_valid_fold, y1_valid_fold)
|
62 |
|
63 |
for train_index, test_index in cv.split(x2, y2):
|
|
|
66 |
x2_train_fold, y2_train_fold = resampler.fit_resample(x2_train_fold, y2_train_fold)
|
67 |
y2_model = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)
|
68 |
y2_model.fit(x2_train_fold, y2_train_fold, overwrite_warning=True)
|
69 |
+
y2_calib_model = CalibratedClassifierCV(y2_model, method='isotonic', cv='prefit')
|
70 |
y2_calib_model.fit(x2_valid_fold, y2_valid_fold)
|
71 |
|
72 |
for train_index, test_index in cv.split(x3, y3):
|
|
|
75 |
x3_train_fold, y3_train_fold = resampler.fit_resample(x3_train_fold, y3_train_fold)
|
76 |
y3_model = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)
|
77 |
y3_model.fit(x3_train_fold, y3_train_fold, overwrite_warning=True)
|
78 |
+
y3_calib_model = CalibratedClassifierCV(y3_model, method='isotonic', cv='prefit')
|
79 |
y3_calib_model.fit(x3_valid_fold, y3_valid_fold)
|
80 |
|
81 |
|