Spaces:
Runtime error
Runtime error
Commit
·
4cb6ee4
1
Parent(s):
dcc0c48
Upload app.py
Browse files
app.py
CHANGED
@@ -67,16 +67,16 @@ g2_y4_valid = g2_x4_valid.pop('OUTCOME')
|
|
67 |
|
68 |
|
69 |
#Assign hyperparameters (g2).
|
70 |
-
g2_y1_params = {'
|
71 |
g2_y2_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 6.121600211393574e-07, 'lambda_l2': 0.0028998418721597743, 'num_leaves': 2, 'feature_fraction': 0.6798107660641116, 'bagging_fraction': 0.42950125330169564, 'bagging_freq': 7, 'min_child_samples': 87, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
|
72 |
g2_y3_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 6.806711570427862e-07, 'lambda_l2': 0.003064768550805565, 'num_leaves': 2, 'feature_fraction': 0.6780931825384188, 'bagging_fraction': 0.5046150209604292, 'bagging_freq': 3, 'min_child_samples': 69, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
|
73 |
g2_y4_params = {'criterion': 'gini', 'max_features': 'log2', 'max_depth': 5, 'n_estimators': 800, 'min_samples_leaf': 3, 'min_samples_split': 2, 'random_state': 31}
|
74 |
|
75 |
#Training models (g2).
|
76 |
|
77 |
-
from
|
78 |
-
|
79 |
-
g2_y1_model =
|
80 |
g2_y1_model = g2_y1_model.fit(g2_x1, g2_y1)
|
81 |
g2_y1_explainer = shap.Explainer(g2_y1_model.predict, g2_x1)
|
82 |
g2_y1_calib_probs = g2_y1_model.predict_proba(g2_x1_valid)
|
@@ -523,7 +523,7 @@ with gr.Blocks(title = "NCDB-G2G3 Glioma") as demo:
|
|
523 |
|
524 |
gr.Markdown(
|
525 |
"""
|
526 |
-
<center><h3>Model Performances</h3></center>
|
527 |
<div style="text-align:center;">
|
528 |
<table style="width:100%;">
|
529 |
<tr>
|
@@ -538,43 +538,103 @@ with gr.Blocks(title = "NCDB-G2G3 Glioma") as demo:
|
|
538 |
</tr>
|
539 |
<tr>
|
540 |
<td>12-Month Mortality</td>
|
541 |
-
<td>
|
542 |
-
<td>0.
|
543 |
-
<td>0.
|
544 |
-
<td>0.
|
545 |
-
<td>0.
|
546 |
-
<td>0.
|
547 |
-
<td>0.
|
548 |
</tr>
|
549 |
<tr>
|
550 |
<td>24-Month Mortality</td>
|
551 |
<td>LightGBM</td>
|
552 |
-
<td>0.
|
553 |
-
<td>0.
|
554 |
-
<td>0.
|
555 |
-
<td>0.
|
556 |
-
<td>0.
|
557 |
-
<td>0.
|
558 |
</tr>
|
559 |
<tr>
|
560 |
<td>36-Month Mortality</td>
|
561 |
<td>LightGBM</td>
|
562 |
-
<td>0.
|
563 |
-
<td>0.
|
564 |
-
<td>0.803 (0.
|
565 |
-
<td>0.
|
566 |
-
<td>0.
|
567 |
-
<td>0.
|
568 |
</tr>
|
569 |
<tr>
|
570 |
<td>60-Month Mortality</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
<td>LightGBM</td>
|
572 |
-
<td>0.
|
573 |
-
<td>0.
|
574 |
-
<td>0.
|
575 |
-
<td>0.
|
576 |
-
<td>0.
|
577 |
-
<td>0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
578 |
</tr>
|
579 |
</table>
|
580 |
</div>
|
@@ -638,7 +698,7 @@ with gr.Blocks(title = "NCDB-G2G3 Glioma") as demo:
|
|
638 |
"""
|
639 |
<center> <h2>12-Month Survival</h2> </center>
|
640 |
<br/>
|
641 |
-
<center> This model uses the
|
642 |
<br/>
|
643 |
"""
|
644 |
)
|
|
|
67 |
|
68 |
|
69 |
#Assign hyperparameters (g2).
|
70 |
+
g2_y1_params = {'criterion': 'gini', 'max_features': 'log2', 'max_depth': 4, 'n_estimators': 900, 'min_samples_leaf': 3, 'min_samples_split': 3, 'random_state': 31}
|
71 |
g2_y2_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 6.121600211393574e-07, 'lambda_l2': 0.0028998418721597743, 'num_leaves': 2, 'feature_fraction': 0.6798107660641116, 'bagging_fraction': 0.42950125330169564, 'bagging_freq': 7, 'min_child_samples': 87, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
|
72 |
g2_y3_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 6.806711570427862e-07, 'lambda_l2': 0.003064768550805565, 'num_leaves': 2, 'feature_fraction': 0.6780931825384188, 'bagging_fraction': 0.5046150209604292, 'bagging_freq': 3, 'min_child_samples': 69, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
|
73 |
g2_y4_params = {'criterion': 'gini', 'max_features': 'log2', 'max_depth': 5, 'n_estimators': 800, 'min_samples_leaf': 3, 'min_samples_split': 2, 'random_state': 31}
|
74 |
|
75 |
#Training models (g2).
|
76 |
|
77 |
+
from sklearn.ensemble import RandomForestClassifier
|
78 |
+
rf = RandomForestClassifier(**g2_y1_params)
|
79 |
+
g2_y1_model = rf
|
80 |
g2_y1_model = g2_y1_model.fit(g2_x1, g2_y1)
|
81 |
g2_y1_explainer = shap.Explainer(g2_y1_model.predict, g2_x1)
|
82 |
g2_y1_calib_probs = g2_y1_model.predict_proba(g2_x1_valid)
|
|
|
523 |
|
524 |
gr.Markdown(
|
525 |
"""
|
526 |
+
<center><h3>Model Performances for Grade II Gliomas</h3></center>
|
527 |
<div style="text-align:center;">
|
528 |
<table style="width:100%;">
|
529 |
<tr>
|
|
|
538 |
</tr>
|
539 |
<tr>
|
540 |
<td>12-Month Mortality</td>
|
541 |
+
<td>Random Forest</td>
|
542 |
+
<td>0.838 (0.822 - 0.854)</td>
|
543 |
+
<td>0.814 (0.797 - 0.831)</td>
|
544 |
+
<td>0.816 (0.799 - 0.833)</td>
|
545 |
+
<td>0.383 (0.361 - 0.405)</td>
|
546 |
+
<td>0.888 (0.856 - 0.912)</td>
|
547 |
+
<td>0.054 (0.044 - 0.064)</td>
|
548 |
</tr>
|
549 |
<tr>
|
550 |
<td>24-Month Mortality</td>
|
551 |
<td>LightGBM</td>
|
552 |
+
<td>0.712 (0.692 - 0.732)</td>
|
553 |
+
<td>0.839 (0.822 - 0.856)</td>
|
554 |
+
<td>0.823 (0.806 - 0.840)</td>
|
555 |
+
<td>0.523 (0.500 - 0.546)</td>
|
556 |
+
<td>0.859 (0.804 - 0.867)</td>
|
557 |
+
<td>0.054 (0.044 - 0.064)</td>
|
558 |
</tr>
|
559 |
<tr>
|
560 |
<td>36-Month Mortality</td>
|
561 |
<td>LightGBM</td>
|
562 |
+
<td>0.653 (0.631 - 0.675)</td>
|
563 |
+
<td>0.836 (0.819 - 0.853)</td>
|
564 |
+
<td>0.803 (0.785 - 0.821)</td>
|
565 |
+
<td>0.564 (0.541 - 0.587)</td>
|
566 |
+
<td>0.813 (0.777 - 0.835)</td>
|
567 |
+
<td>0.111 (0.096 - 0.126)</td>
|
568 |
</tr>
|
569 |
<tr>
|
570 |
<td>60-Month Mortality</td>
|
571 |
+
<td>Random Forest</td>
|
572 |
+
<td>0.838 (0.822 - 0.854)</td>
|
573 |
+
<td>0.814 (0.797 - 0.831)</td>
|
574 |
+
<td>0.816 (0.799 - 0.833)</td>
|
575 |
+
<td>0.383 (0.361 - 0.405)</td>
|
576 |
+
<td>0.888 (0.856 - 0.912)</td>
|
577 |
+
<td>0.054 (0.044 - 0.064)</td>
|
578 |
+
</tr>
|
579 |
+
</table>
|
580 |
+
</div>
|
581 |
+
"""
|
582 |
+
)
|
583 |
+
|
584 |
+
gr.Markdown(
|
585 |
+
"""
|
586 |
+
<center><h3>Model Performances for Grade III Gliomas</h3></center>
|
587 |
+
<div style="text-align:center;">
|
588 |
+
<table style="width:100%;">
|
589 |
+
<tr>
|
590 |
+
<th>Outcome</th>
|
591 |
+
<th>Algorithm</th>
|
592 |
+
<th>Sensitivity</th>
|
593 |
+
<th>Specificity</th>
|
594 |
+
<th>Accuracy</th>
|
595 |
+
<th>AUPRC</th>
|
596 |
+
<th>AUROC</th>
|
597 |
+
<th>Brier Score</th>
|
598 |
+
</tr>
|
599 |
+
<tr>
|
600 |
+
<td>12-Month Mortality</td>
|
601 |
<td>LightGBM</td>
|
602 |
+
<td>0.768 (0.750 - 0.786)</td>
|
603 |
+
<td>0.811 (0.795 - 0.827)</td>
|
604 |
+
<td>0.800 (0.783 - 0.817)</td>
|
605 |
+
<td>0.725 (0.706 - 0.744)</td>
|
606 |
+
<td>0.876 (0.857 - 0.889)</td>
|
607 |
+
<td>0.119 (0.106 - 0.132)</td>
|
608 |
+
</tr>
|
609 |
+
<tr>
|
610 |
+
<td>24-Month Mortality</td>
|
611 |
+
<td>Random Forest</td>
|
612 |
+
<td>0.722 (0.703 - 0.741)</td>
|
613 |
+
<td>0.810 (0.794 - 0.826)</td>
|
614 |
+
<td>0.796 (0.779 - 0.813)</td>
|
615 |
+
<td>0.775 (0.758 - 0.792)</td>
|
616 |
+
<td>0.855 (0.839 - 0.870)</td>
|
617 |
+
<td>0.153 (0.138 - 0.168)</td>
|
618 |
+
</tr>
|
619 |
+
<tr>
|
620 |
+
<td>36-Month Mortality</td>
|
621 |
+
<td>Random Forest</td>
|
622 |
+
<td>0.763 (0.745 - 0.781)</td>
|
623 |
+
<td>0.827 (0.811 - 0.843)</td>
|
624 |
+
<td>0.874 (0.860 - 0.888)</td>
|
625 |
+
<td>0.794 (0.777 - 0.811)</td>
|
626 |
+
<td>0.878 (0.857 - 0.885)</td>
|
627 |
+
<td>0.146 (0.131 - 0.161)</td>
|
628 |
+
</tr>
|
629 |
+
<tr>
|
630 |
+
<td>60-Month Mortality</td>
|
631 |
+
<td>LightGBM</td>
|
632 |
+
<td>0.816 (0.798 - 0.834)</td>
|
633 |
+
<td>0.748 (0.728 - 0.768)</td>
|
634 |
+
<td>0.930 (0.918 - 0.942)</td>
|
635 |
+
<td>0.795 (0.776 - 0.814)</td>
|
636 |
+
<td>0.860 (0.834 - 0.870)</td>
|
637 |
+
<td>0.142 (0.126 - 0.158)</td>
|
638 |
</tr>
|
639 |
</table>
|
640 |
</div>
|
|
|
698 |
"""
|
699 |
<center> <h2>12-Month Survival</h2> </center>
|
700 |
<br/>
|
701 |
+
<center> This model uses the Random Forest algorithm.</center>
|
702 |
<br/>
|
703 |
"""
|
704 |
)
|