MNGames commited on
Commit
7fcc53a
·
verified ·
1 Parent(s): de9c66c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -3
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
  import cv2 # OpenCV for video processing
4
 
5
  # Model ID for video classification (UCF101 subset)
@@ -9,11 +9,19 @@ def analyze_video(video):
9
  # Extract key frames from the video using OpenCV
10
  frames = extract_key_frames(video)
11
 
 
 
 
 
 
 
 
12
  # Analyze key frames using video classification model
13
  results = []
14
- classifier = pipeline("video-classification", model=model_id)
15
  for frame in frames:
16
- predictions = classifier(images=frame) # Assuming model outputs probabilities
 
 
17
  # Analyze predictions for insights related to the play
18
  result = analyze_predictions_ucf101(predictions)
19
  results.append(result)
 
1
  import gradio as gr
2
+ from transformers import AutoModelForVideoClassification, AutoTokenizer, VideoClassificationPipeline
3
  import cv2 # OpenCV for video processing
4
 
5
  # Model ID for video classification (UCF101 subset)
 
9
  # Extract key frames from the video using OpenCV
10
  frames = extract_key_frames(video)
11
 
12
+ # Load model and tokenizer manually
13
+ model = AutoModelForVideoClassification.from_pretrained(model_id)
14
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
15
+
16
+ # Create the pipeline
17
+ classifier = VideoClassificationPipeline(model=model, tokenizer=tokenizer, device=-1)
18
+
19
  # Analyze key frames using video classification model
20
  results = []
 
21
  for frame in frames:
22
+ # OpenCV uses BGR, convert to RGB for the model
23
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
24
+ predictions = classifier(images=[frame_rgb]) # Assuming model outputs probabilities
25
  # Analyze predictions for insights related to the play
26
  result = analyze_predictions_ucf101(predictions)
27
  results.append(result)