FastMail / app.py
MNGames's picture
Update app.py
41efb19 verified
raw
history blame
2.37 kB
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from gradio import Interface
# Define the model name (change if desired)
model_name = "facebook/bart-base"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def generate_questions(email):
"""Generates questions based on the input email."""
# Encode the email and prompt together with tokenizer
inputs = tokenizer(email, return_tensors="pt", add_special_tokens=True)
# Convert tensor to list before concatenation
inputs["input_ids"] = [tokenizer.cls_token_id] + inputs["input_ids"].tolist()
# Generate questions using model
generation = model.generate(
**inputs, # Unpack the entire inputs dictionary
max_length=256, # Adjust max length as needed
num_beams=5, # Adjust beam search for better quality (slower)
early_stopping=True,
)
# Decode the generated text
return tokenizer.decode(generation[0], skip_special_tokens=True)
def generate_answers(questions):
"""Generates possible answers to the input questions."""
# Encode each question with tokenizer, separated by newline
inputs = tokenizer("\n".join(questions), return_tensors="pt")
# Generate answers using model with specific prompt
generation = model.generate(
input_ids=inputs["input_ids"],
max_length=512, # Adjust max length as needed
num_beams=3, # Adjust beam search for better quality (slower)
early_stopping=True,
prompt="Here are some possible answers to the questions:\n",
)
# Decode the generated text
answers = tokenizer.decode(generation[0], skip_special_tokens=True).split("\n")
return zip(questions, answers[1:]) # Skip the first answer (prompt repetition)
def gradio_app(email):
"""Gradio interface function"""
questions = generate_questions(email)
answers = generate_answers(questions.split("\n"))
return questions, [answer for _, answer in answers]
# Gradio interface definition
# Gradio interface definition (without label)
interface = Interface(
fn=gradio_app,
inputs="textbox",
outputs=["text", "text"],
title="AI Email Assistant",
description="Enter a long email and get questions and possible answers generated by an AI model.",
elem_id="email-input"
)
# Launch the Gradio interface
interface.launch()