Spaces:
Running
Running
import time | |
import json | |
import gradio as gr | |
from gradio_molecule3d import Molecule3D | |
import numpy as np | |
from biotite.structure.io.pdb import PDBFile | |
def set_all_to_zero(input_pdb_file_1, input_pdb_file_2, output_file): | |
structure1 = PDBFile.read(input_pdb_file_1).get_structure() | |
structure2 = PDBFile.read(input_pdb_file_2).get_structure() | |
structure1.coord = np.zeros_like(structure1.coord) | |
structure2.coord = np.zeros_like(structure2.coord) | |
out_structure = structure1 + structure2 | |
file = PDBFile() | |
file.set_structure(out_structure) | |
file.write(output_file) | |
def predict(input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2, input_protein_2): | |
# def predict(input_protein_1, input_protein_2): | |
start_time = time.time() | |
# Do inference here | |
# return an output pdb file with the protein and two chains A and B. | |
output_file = "test_out.pdb" | |
set_all_to_zero(input_protein_1, input_protein_2, output_file) | |
# also return a JSON with any metrics you want to report | |
metrics = {"F_nat": 100} | |
end_time = time.time() | |
run_time = end_time - start_time | |
return output_file, json.dumps(metrics), run_time | |
with gr.Blocks() as app: | |
gr.Markdown("# Template for inference") | |
gr.Markdown("Title, description, and other information about the model") | |
with gr.Row(): | |
with gr.Column(): | |
input_seq_1 = gr.Textbox(lines=3, label="Input Protein 1 sequence (FASTA)") | |
input_msa_1 = gr.File(label="Input MSA Protein 1 (A3M)") | |
input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)") | |
with gr.Column(): | |
input_seq_2 = gr.Textbox(lines=3, label="Input Protein 2 sequence (FASTA)") | |
input_msa_2 = gr.File(label="Input MSA Protein 2 (A3M)") | |
input_protein_2 = gr.File(label="Input Protein 2 structure (PDB)") | |
# define any options here | |
# for automated inference the default options are used | |
# slider_option = gr.Slider(0,10, label="Slider Option") | |
# checkbox_option = gr.Checkbox(label="Checkbox Option") | |
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option") | |
btn = gr.Button("Run Inference") | |
gr.Examples( | |
[ | |
[ | |
"", | |
"", | |
"3v1c_A.pdb", | |
"", | |
"", | |
"3v1c_B.pdb", | |
], | |
], | |
[input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2, input_protein_2], | |
) | |
reps = [ | |
{ | |
"model": 0, | |
"style": "cartoon", | |
"chain": "A", | |
"color": "whiteCarbon", | |
}, | |
{ | |
"model": 0, | |
"style": "cartoon", | |
"chain": "B", | |
"color": "greenCarbon", | |
}, | |
{ | |
"model": 0, | |
"chain": "A", | |
"style": "stick", | |
"sidechain": True, | |
"color": "whiteCarbon", | |
}, | |
{ | |
"model": 0, | |
"chain": "B", | |
"style": "stick", | |
"sidechain": True, | |
"color": "greenCarbon" | |
} | |
] | |
# outputs | |
out = Molecule3D(reps=reps) | |
metrics = gr.JSON(label="Metrics") | |
run_time = gr.Textbox(label="Runtime") | |
btn.click(predict, inputs=[input_seq_1, input_msa_1, input_protein_1, input_seq_2, input_msa_2, input_protein_2], outputs=[out, metrics, run_time]) | |
app.launch() | |