bshor's picture
add code
0fdcb79
raw
history blame
36.3 kB
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import ml_collections
import numpy as np
import torch
import torch.nn as nn
from typing import Dict, Optional, Tuple
from dockformerpp.utils import residue_constants
from dockformerpp.utils.feats import pseudo_beta_fn
from dockformerpp.utils.rigid_utils import Rotation, Rigid
from dockformerpp.utils.geometry.vector import Vec3Array, euclidean_distance
from dockformerpp.utils.tensor_utils import (
tree_map,
masked_mean,
permute_final_dims,
)
import logging
from dockformerpp.utils.tensor_utils import tensor_tree_map
logger = logging.getLogger(__name__)
def softmax_cross_entropy(logits, labels):
loss = -1 * torch.sum(
labels * torch.nn.functional.log_softmax(logits, dim=-1),
dim=-1,
)
return loss
def sigmoid_cross_entropy(logits, labels):
logits_dtype = logits.dtype
try:
logits = logits.double()
labels = labels.double()
except:
logits = logits.to(dtype=torch.float32)
labels = labels.to(dtype=torch.float32)
log_p = torch.nn.functional.logsigmoid(logits)
# log_p = torch.log(torch.sigmoid(logits))
log_not_p = torch.nn.functional.logsigmoid(-1 * logits)
# log_not_p = torch.log(torch.sigmoid(-logits))
loss = (-1. * labels) * log_p - (1. - labels) * log_not_p
loss = loss.to(dtype=logits_dtype)
return loss
def torsion_angle_loss(
a, # [*, N, 7, 2]
a_gt, # [*, N, 7, 2]
a_alt_gt, # [*, N, 7, 2]
):
# [*, N, 7]
norm = torch.norm(a, dim=-1)
# [*, N, 7, 2]
a = a / norm.unsqueeze(-1)
# [*, N, 7]
diff_norm_gt = torch.norm(a - a_gt, dim=-1)
diff_norm_alt_gt = torch.norm(a - a_alt_gt, dim=-1)
min_diff = torch.minimum(diff_norm_gt ** 2, diff_norm_alt_gt ** 2)
# [*]
l_torsion = torch.mean(min_diff, dim=(-1, -2))
l_angle_norm = torch.mean(torch.abs(norm - 1), dim=(-1, -2))
an_weight = 0.02
return l_torsion + an_weight * l_angle_norm
def compute_fape(
pred_frames: Rigid,
target_frames: Rigid,
frames_mask: torch.Tensor,
pred_positions: torch.Tensor,
target_positions: torch.Tensor,
positions_mask: torch.Tensor,
length_scale: float,
pair_mask: Optional[torch.Tensor] = None,
l1_clamp_distance: Optional[float] = None,
eps=1e-8,
) -> torch.Tensor:
"""
Computes FAPE loss.
Args:
pred_frames:
[*, N_frames] Rigid object of predicted frames
target_frames:
[*, N_frames] Rigid object of ground truth frames
frames_mask:
[*, N_frames] binary mask for the frames
pred_positions:
[*, N_pts, 3] predicted atom positions
target_positions:
[*, N_pts, 3] ground truth positions
positions_mask:
[*, N_pts] positions mask
length_scale:
Length scale by which the loss is divided
pair_mask:
[*, N_frames, N_pts] mask to use for
separating intra- from inter-chain losses.
l1_clamp_distance:
Cutoff above which distance errors are disregarded
eps:
Small value used to regularize denominators
Returns:
[*] loss tensor
"""
# [*, N_frames, N_pts, 3]
local_pred_pos = pred_frames.invert()[..., None].apply(
pred_positions[..., None, :, :],
)
local_target_pos = target_frames.invert()[..., None].apply(
target_positions[..., None, :, :],
)
error_dist = torch.sqrt(
torch.sum((local_pred_pos - local_target_pos) ** 2, dim=-1) + eps
)
if l1_clamp_distance is not None:
error_dist = torch.clamp(error_dist, min=0, max=l1_clamp_distance)
normed_error = error_dist / length_scale
normed_error = normed_error * frames_mask[..., None]
normed_error = normed_error * positions_mask[..., None, :]
if pair_mask is not None:
normed_error = normed_error * pair_mask
normed_error = torch.sum(normed_error, dim=(-1, -2))
mask = frames_mask[..., None] * positions_mask[..., None, :] * pair_mask
norm_factor = torch.sum(mask, dim=(-2, -1))
normed_error = normed_error / (eps + norm_factor)
else:
# FP16-friendly averaging. Roughly equivalent to:
#
# norm_factor = (
# torch.sum(frames_mask, dim=-1) *
# torch.sum(positions_mask, dim=-1)
# )
# normed_error = torch.sum(normed_error, dim=(-1, -2)) / (eps + norm_factor)
#
# ("roughly" because eps is necessarily duplicated in the latter)
normed_error = torch.sum(normed_error, dim=-1)
normed_error = (
normed_error / (eps + torch.sum(frames_mask, dim=-1))[..., None]
)
normed_error = torch.sum(normed_error, dim=-1)
normed_error = normed_error / (eps + torch.sum(positions_mask, dim=-1))
return normed_error
def backbone_loss(
backbone_rigid_tensor: torch.Tensor,
backbone_rigid_mask: torch.Tensor,
traj: torch.Tensor,
pair_mask: Optional[torch.Tensor] = None,
use_clamped_fape: Optional[torch.Tensor] = None,
clamp_distance: float = 10.0,
loss_unit_distance: float = 10.0,
eps: float = 1e-4,
**kwargs,
) -> torch.Tensor:
### need to check if the traj belongs to 4*4 matrix or a tensor_7
if traj.shape[-1] == 7:
pred_aff = Rigid.from_tensor_7(traj)
elif traj.shape[-1] == 4:
pred_aff = Rigid.from_tensor_4x4(traj)
pred_aff = Rigid(
Rotation(rot_mats=pred_aff.get_rots().get_rot_mats(), quats=None),
pred_aff.get_trans(),
)
# DISCREPANCY: DeepMind somehow gets a hold of a tensor_7 version of
# backbone tensor, normalizes it, and then turns it back to a rotation
# matrix. To avoid a potentially numerically unstable rotation matrix
# to quaternion conversion, we just use the original rotation matrix
# outright. This one hasn't been composed a bunch of times, though, so
# it might be fine.
gt_aff = Rigid.from_tensor_4x4(backbone_rigid_tensor)
fape_loss = compute_fape(
pred_aff,
gt_aff[None],
backbone_rigid_mask[None],
pred_aff.get_trans(),
gt_aff[None].get_trans(),
backbone_rigid_mask[None],
pair_mask=pair_mask,
l1_clamp_distance=clamp_distance,
length_scale=loss_unit_distance,
eps=eps,
)
if use_clamped_fape is not None:
unclamped_fape_loss = compute_fape(
pred_aff,
gt_aff[None],
backbone_rigid_mask[None],
pred_aff.get_trans(),
gt_aff[None].get_trans(),
backbone_rigid_mask[None],
pair_mask=pair_mask,
l1_clamp_distance=None,
length_scale=loss_unit_distance,
eps=eps,
)
fape_loss = fape_loss * use_clamped_fape + unclamped_fape_loss * (
1 - use_clamped_fape
)
# Average over the batch dimension
fape_loss = torch.mean(fape_loss)
return fape_loss
def sidechain_loss(
pred_sidechain_frames: torch.Tensor,
pred_sidechain_atom_pos: torch.Tensor,
rigidgroups_gt_frames: torch.Tensor,
rigidgroups_alt_gt_frames: torch.Tensor,
rigidgroups_gt_exists: torch.Tensor,
renamed_atom14_gt_positions: torch.Tensor,
renamed_atom14_gt_exists: torch.Tensor,
alt_naming_is_better: torch.Tensor,
clamp_distance: float = 10.0,
length_scale: float = 10.0,
eps: float = 1e-4,
only_include_ligand_atoms: bool = False,
**kwargs,
) -> torch.Tensor:
renamed_gt_frames = (
1.0 - alt_naming_is_better[..., None, None, None]
) * rigidgroups_gt_frames + alt_naming_is_better[
..., None, None, None
] * rigidgroups_alt_gt_frames
# Steamroll the inputs
pred_sidechain_frames = pred_sidechain_frames[-1] # get only the last layer of the strcuture module
batch_dims = pred_sidechain_frames.shape[:-4]
pred_sidechain_frames = pred_sidechain_frames.view(*batch_dims, -1, 4, 4)
pred_sidechain_frames = Rigid.from_tensor_4x4(pred_sidechain_frames)
renamed_gt_frames = renamed_gt_frames.view(*batch_dims, -1, 4, 4)
renamed_gt_frames = Rigid.from_tensor_4x4(renamed_gt_frames)
rigidgroups_gt_exists = rigidgroups_gt_exists.reshape(*batch_dims, -1)
pred_sidechain_atom_pos = pred_sidechain_atom_pos[-1]
pred_sidechain_atom_pos = pred_sidechain_atom_pos.view(*batch_dims, -1, 3)
renamed_atom14_gt_positions = renamed_atom14_gt_positions.view(
*batch_dims, -1, 3
)
renamed_atom14_gt_exists = renamed_atom14_gt_exists.view(*batch_dims, -1)
atom_mask_to_apply = renamed_atom14_gt_exists
if only_include_ligand_atoms:
ligand_atom14_mask = torch.repeat_interleave(ligand_mask, 14, dim=-1)
atom_mask_to_apply = atom_mask_to_apply * ligand_atom14_mask
fape = compute_fape(
pred_sidechain_frames,
renamed_gt_frames,
rigidgroups_gt_exists,
pred_sidechain_atom_pos,
renamed_atom14_gt_positions,
atom_mask_to_apply,
pair_mask=None,
l1_clamp_distance=clamp_distance,
length_scale=length_scale,
eps=eps,
)
return fape
def fape_bb(
out: Dict[str, torch.Tensor],
batch: Dict[str, torch.Tensor],
config: ml_collections.ConfigDict,
) -> torch.Tensor:
traj = out["sm"]["frames"]
bb_loss = backbone_loss(
traj=traj,
**{**batch, **config},
)
loss = torch.mean(bb_loss)
return loss
def fape_sidechain(
out: Dict[str, torch.Tensor],
batch: Dict[str, torch.Tensor],
config: ml_collections.ConfigDict,
) -> torch.Tensor:
sc_loss = sidechain_loss(
out["sm"]["sidechain_frames"],
out["sm"]["positions"],
**{**batch, **config},
)
loss = torch.mean(sc_loss)
return loss
def fape_interface(
out: Dict[str, torch.Tensor],
batch: Dict[str, torch.Tensor],
config: ml_collections.ConfigDict,
) -> torch.Tensor:
# sc_loss = sidechain_loss(
# out["sm"]["sidechain_frames"],
# out["sm"]["positions"],
# only_include_ligand_atoms=True,
# **{**batch, **config},
# )
# loss = torch.mean(sc_loss)
traj = out["sm"]["frames"]
full_structure_mask = batch["structural_mask"][..., None] * batch["structural_mask"][..., None, :]
pair_protein_r_mask = batch["protein_r_mask"][..., None] * batch["protein_r_mask"][..., None, :]
pair_protein_l_mask = batch["protein_l_mask"][..., None] * batch["protein_l_mask"][..., None, :]
inter_pair_protein_mask = full_structure_mask - (pair_protein_r_mask + pair_protein_l_mask)
bb_loss = backbone_loss(
traj=traj,
**{**batch, **config},
pair_mask=inter_pair_protein_mask
)
loss = torch.mean(bb_loss)
return loss
def supervised_chi_loss(
angles_sin_cos: torch.Tensor,
unnormalized_angles_sin_cos: torch.Tensor,
aatype: torch.Tensor,
structural_mask: torch.Tensor,
chi_mask: torch.Tensor,
chi_angles_sin_cos: torch.Tensor,
chi_weight: float,
angle_norm_weight: float,
eps=1e-6,
**kwargs,
) -> torch.Tensor:
"""
Implements Algorithm 27 (torsionAngleLoss)
Args:
angles_sin_cos:
[*, N, 7, 2] predicted angles
unnormalized_angles_sin_cos:
The same angles, but unnormalized
aatype:
[*, N] residue indices
structural_mask:
[*, N] protein mask
chi_mask:
[*, N, 7] angle mask
chi_angles_sin_cos:
[*, N, 7, 2] ground truth angles
chi_weight:
Weight for the angle component of the loss
angle_norm_weight:
Weight for the normalization component of the loss
Returns:
[*] loss tensor
"""
pred_angles = angles_sin_cos[..., 3:, :]
residue_type_one_hot = torch.nn.functional.one_hot(
aatype,
residue_constants.restype_num + 1,
)
chi_pi_periodic = torch.einsum(
"...ij,jk->ik",
residue_type_one_hot.type(angles_sin_cos.dtype),
angles_sin_cos.new_tensor(residue_constants.chi_pi_periodic),
)
true_chi = chi_angles_sin_cos[None]
shifted_mask = (1 - 2 * chi_pi_periodic).unsqueeze(-1)
true_chi_shifted = shifted_mask * true_chi
sq_chi_error = torch.sum((true_chi - pred_angles) ** 2, dim=-1)
sq_chi_error_shifted = torch.sum(
(true_chi_shifted - pred_angles) ** 2, dim=-1
)
sq_chi_error = torch.minimum(sq_chi_error, sq_chi_error_shifted)
# The ol' switcheroo
sq_chi_error = sq_chi_error.permute(
*range(len(sq_chi_error.shape))[1:-2], 0, -2, -1
)
sq_chi_loss = masked_mean(
chi_mask[..., None, :, :], sq_chi_error, dim=(-1, -2, -3)
)
loss = chi_weight * sq_chi_loss
angle_norm = torch.sqrt(
torch.sum(unnormalized_angles_sin_cos ** 2, dim=-1) + eps
)
norm_error = torch.abs(angle_norm - 1.0)
norm_error = norm_error.permute(
*range(len(norm_error.shape))[1:-2], 0, -2, -1
)
angle_norm_loss = masked_mean(
structural_mask[..., None, :, None], norm_error, dim=(-1, -2, -3)
)
loss = loss + angle_norm_weight * angle_norm_loss
# Average over the batch dimension
loss = torch.mean(loss)
return loss
def compute_plddt(logits: torch.Tensor) -> torch.Tensor:
num_bins = logits.shape[-1]
bin_width = 1.0 / num_bins
bounds = torch.arange(
start=0.5 * bin_width, end=1.0, step=bin_width, device=logits.device
)
probs = torch.nn.functional.softmax(logits, dim=-1)
pred_lddt_ca = torch.sum(
probs * bounds.view(*((1,) * len(probs.shape[:-1])), *bounds.shape),
dim=-1,
)
return pred_lddt_ca * 100
def lddt(
all_atom_pred_pos: torch.Tensor,
all_atom_positions: torch.Tensor,
all_atom_mask: torch.Tensor,
cutoff: float = 15.0,
eps: float = 1e-10,
per_residue: bool = True,
) -> torch.Tensor:
n = all_atom_mask.shape[-2]
dmat_true = torch.sqrt(
eps
+ torch.sum(
(
all_atom_positions[..., None, :]
- all_atom_positions[..., None, :, :]
)
** 2,
dim=-1,
)
)
dmat_pred = torch.sqrt(
eps
+ torch.sum(
(
all_atom_pred_pos[..., None, :]
- all_atom_pred_pos[..., None, :, :]
)
** 2,
dim=-1,
)
)
dists_to_score = (
(dmat_true < cutoff)
* all_atom_mask
* permute_final_dims(all_atom_mask, (1, 0))
* (1.0 - torch.eye(n, device=all_atom_mask.device))
)
dist_l1 = torch.abs(dmat_true - dmat_pred)
score = (
(dist_l1 < 0.5).type(dist_l1.dtype)
+ (dist_l1 < 1.0).type(dist_l1.dtype)
+ (dist_l1 < 2.0).type(dist_l1.dtype)
+ (dist_l1 < 4.0).type(dist_l1.dtype)
)
score = score * 0.25
dims = (-1,) if per_residue else (-2, -1)
norm = 1.0 / (eps + torch.sum(dists_to_score, dim=dims))
score = norm * (eps + torch.sum(dists_to_score * score, dim=dims))
return score
def lddt_ca(
all_atom_pred_pos: torch.Tensor,
all_atom_positions: torch.Tensor,
all_atom_mask: torch.Tensor,
cutoff: float = 15.0,
eps: float = 1e-10,
per_residue: bool = True,
) -> torch.Tensor:
ca_pos = residue_constants.atom_order["CA"]
all_atom_pred_pos = all_atom_pred_pos[..., ca_pos, :]
all_atom_positions = all_atom_positions[..., ca_pos, :]
all_atom_mask = all_atom_mask[..., ca_pos: (ca_pos + 1)] # keep dim
return lddt(
all_atom_pred_pos,
all_atom_positions,
all_atom_mask,
cutoff=cutoff,
eps=eps,
per_residue=per_residue,
)
def lddt_loss(
logits: torch.Tensor,
all_atom_pred_pos: torch.Tensor,
atom37_gt_positions: torch.Tensor,
atom37_atom_exists_in_gt: torch.Tensor,
resolution: torch.Tensor,
cutoff: float = 15.0,
no_bins: int = 50,
min_resolution: float = 0.1,
max_resolution: float = 3.0,
eps: float = 1e-10,
**kwargs,
) -> torch.Tensor:
# remove ligand
logits = logits[:, :atom37_atom_exists_in_gt.shape[1], :]
ca_pos = residue_constants.atom_order["CA"]
all_atom_pred_pos = all_atom_pred_pos[..., ca_pos, :]
atom37_gt_positions = atom37_gt_positions[..., ca_pos, :]
atom37_atom_exists_in_gt = atom37_atom_exists_in_gt[..., ca_pos: (ca_pos + 1)] # keep dim
score = lddt(
all_atom_pred_pos,
atom37_gt_positions,
atom37_atom_exists_in_gt,
cutoff=cutoff,
eps=eps
)
# TODO: Remove after initial pipeline testing
score = torch.nan_to_num(score, nan=torch.nanmean(score))
score[score < 0] = 0
score = score.detach()
bin_index = torch.floor(score * no_bins).long()
bin_index = torch.clamp(bin_index, max=(no_bins - 1))
lddt_ca_one_hot = torch.nn.functional.one_hot(
bin_index, num_classes=no_bins
)
errors = softmax_cross_entropy(logits, lddt_ca_one_hot)
atom37_atom_exists_in_gt = atom37_atom_exists_in_gt.squeeze(-1)
loss = torch.sum(errors * atom37_atom_exists_in_gt, dim=-1) / (
eps + torch.sum(atom37_atom_exists_in_gt, dim=-1)
)
loss = loss * (
(resolution >= min_resolution) & (resolution <= max_resolution)
)
# Average over the batch dimension
loss = torch.mean(loss)
return loss
def distogram_loss(
logits,
gt_pseudo_beta_joined,
gt_pseudo_beta_joined_mask,
min_bin=2.3125,
max_bin=21.6875,
no_bins=64,
eps=1e-6,
**kwargs,
):
boundaries = torch.linspace(
min_bin,
max_bin,
no_bins - 1,
device=logits.device,
)
boundaries = boundaries ** 2
dists = torch.sum(
(gt_pseudo_beta_joined[..., None, :] - gt_pseudo_beta_joined[..., None, :, :]) ** 2,
dim=-1,
keepdims=True,
)
true_bins = torch.sum(dists > boundaries, dim=-1)
errors = softmax_cross_entropy(
logits,
torch.nn.functional.one_hot(true_bins, no_bins),
)
square_mask = gt_pseudo_beta_joined_mask[..., None] * gt_pseudo_beta_joined_mask[..., None, :]
# FP16-friendly sum. Equivalent to:
# mean = (torch.sum(errors * square_mask, dim=(-1, -2)) /
# (eps + torch.sum(square_mask, dim=(-1, -2))))
denom = eps + torch.sum(square_mask, dim=(-1, -2))
mean = errors * square_mask
mean = torch.sum(mean, dim=-1)
mean = mean / denom[..., None]
mean = torch.sum(mean, dim=-1)
# Average over the batch dimensions
mean = torch.mean(mean)
return mean
def inter_contact_loss(
logits: torch.Tensor,
gt_inter_contacts: torch.Tensor,
inter_pair_mask: torch.Tensor,
pos_class_weight: float = 200.0,
contact_distance: float = 5.0,
**kwargs,
):
logits = logits.squeeze(-1)
bce_loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, gt_inter_contacts, reduction='none',
pos_weight=logits.new_tensor([pos_class_weight]))
masked_loss = bce_loss * inter_pair_mask
final_loss = masked_loss.sum() / inter_pair_mask.sum()
return final_loss
def affinity_loss(
logits,
affinity,
affinity_loss_factor,
min_bin=0,
max_bin=15,
no_bins=32,
**kwargs,
):
boundaries = torch.linspace(
min_bin,
max_bin,
no_bins - 1,
device=logits.device,
)
true_bins = torch.sum(affinity > boundaries, dim=-1)
errors = softmax_cross_entropy(
logits,
torch.nn.functional.one_hot(true_bins, no_bins),
)
# print("errors dim", errors.shape, affinity_loss_factor.shape, errors)
after_factor = errors * affinity_loss_factor.squeeze()
if affinity_loss_factor.sum() > 0.1:
mean_val = after_factor.sum() / affinity_loss_factor.sum()
else:
# If no affinity in batch - get a very small loss. the factor also makes the loss small
mean_val = after_factor.sum() * 1e-3
# print("after factor", after_factor.shape, after_factor, affinity_loss_factor.sum(), mean_val)
return mean_val
def _calculate_bin_centers(boundaries: torch.Tensor):
step = boundaries[1] - boundaries[0]
bin_centers = boundaries + step / 2
bin_centers = torch.cat(
[bin_centers, (bin_centers[-1] + step).unsqueeze(-1)], dim=0
)
return bin_centers
def _calculate_expected_aligned_error(
alignment_confidence_breaks: torch.Tensor,
aligned_distance_error_probs: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
bin_centers = _calculate_bin_centers(alignment_confidence_breaks)
return (
torch.sum(aligned_distance_error_probs * bin_centers, dim=-1),
bin_centers[-1],
)
def compute_predicted_aligned_error(
logits: torch.Tensor,
max_bin: int = 31,
no_bins: int = 64,
**kwargs,
) -> Dict[str, torch.Tensor]:
"""Computes aligned confidence metrics from logits.
Args:
logits: [*, num_res, num_res, num_bins] the logits output from
PredictedAlignedErrorHead.
max_bin: Maximum bin value
no_bins: Number of bins
Returns:
aligned_confidence_probs: [*, num_res, num_res, num_bins] the predicted
aligned error probabilities over bins for each residue pair.
predicted_aligned_error: [*, num_res, num_res] the expected aligned distance
error for each pair of residues.
max_predicted_aligned_error: [*] the maximum predicted error possible.
"""
boundaries = torch.linspace(
0, max_bin, steps=(no_bins - 1), device=logits.device
)
aligned_confidence_probs = torch.nn.functional.softmax(logits, dim=-1)
(
predicted_aligned_error,
max_predicted_aligned_error,
) = _calculate_expected_aligned_error(
alignment_confidence_breaks=boundaries,
aligned_distance_error_probs=aligned_confidence_probs,
)
return {
"aligned_confidence_probs": aligned_confidence_probs,
"predicted_aligned_error": predicted_aligned_error,
"max_predicted_aligned_error": max_predicted_aligned_error,
}
def compute_tm(
logits: torch.Tensor,
residue_weights: Optional[torch.Tensor] = None,
asym_id: Optional[torch.Tensor] = None,
interface: bool = False,
max_bin: int = 31,
no_bins: int = 64,
eps: float = 1e-8,
**kwargs,
) -> torch.Tensor:
if residue_weights is None:
residue_weights = logits.new_ones(logits.shape[-2])
boundaries = torch.linspace(
0, max_bin, steps=(no_bins - 1), device=logits.device
)
bin_centers = _calculate_bin_centers(boundaries)
clipped_n = max(torch.sum(residue_weights), 19)
d0 = 1.24 * (clipped_n - 15) ** (1.0 / 3) - 1.8
probs = torch.nn.functional.softmax(logits, dim=-1)
tm_per_bin = 1.0 / (1 + (bin_centers ** 2) / (d0 ** 2))
predicted_tm_term = torch.sum(probs * tm_per_bin, dim=-1)
n = residue_weights.shape[-1]
pair_mask = residue_weights.new_ones((n, n), dtype=torch.int32)
if interface and (asym_id is not None):
if len(asym_id.shape) > 1:
assert len(asym_id.shape) <= 2
batch_size = asym_id.shape[0]
pair_mask = residue_weights.new_ones((batch_size, n, n), dtype=torch.int32)
pair_mask *= (asym_id[..., None] != asym_id[..., None, :]).to(dtype=pair_mask.dtype)
predicted_tm_term *= pair_mask
pair_residue_weights = pair_mask * (
residue_weights[..., None, :] * residue_weights[..., :, None]
)
denom = eps + torch.sum(pair_residue_weights, dim=-1, keepdims=True)
normed_residue_mask = pair_residue_weights / denom
per_alignment = torch.sum(predicted_tm_term * normed_residue_mask, dim=-1)
weighted = per_alignment * residue_weights
argmax = (weighted == torch.max(weighted)).nonzero()[0]
return per_alignment[tuple(argmax)]
def compute_renamed_ground_truth(
batch: Dict[str, torch.Tensor],
atom14_pred_positions: torch.Tensor,
eps=1e-10,
) -> Dict[str, torch.Tensor]:
"""
Find optimal renaming of ground truth based on the predicted positions.
Alg. 26 "renameSymmetricGroundTruthAtoms"
This renamed ground truth is then used for all losses,
such that each loss moves the atoms in the same direction.
Args:
batch: Dictionary containing:
* atom14_gt_positions: Ground truth positions.
* atom14_alt_gt_positions: Ground truth positions with renaming swaps.
* atom14_atom_is_ambiguous: 1.0 for atoms that are affected by
renaming swaps.
* atom14_gt_exists: Mask for which atoms exist in ground truth.
* atom14_alt_gt_exists: Mask for which atoms exist in ground truth
after renaming.
* atom14_atom_exists: Mask for whether each atom is part of the given
amino acid type.
atom14_pred_positions: Array of atom positions in global frame with shape
Returns:
Dictionary containing:
alt_naming_is_better: Array with 1.0 where alternative swap is better.
renamed_atom14_gt_positions: Array of optimal ground truth positions
after renaming swaps are performed.
renamed_atom14_gt_exists: Mask after renaming swap is performed.
"""
pred_dists = torch.sqrt(
eps
+ torch.sum(
(
atom14_pred_positions[..., None, :, None, :]
- atom14_pred_positions[..., None, :, None, :, :]
)
** 2,
dim=-1,
)
)
atom14_gt_positions = batch["atom14_gt_positions"]
gt_dists = torch.sqrt(
eps
+ torch.sum(
(
atom14_gt_positions[..., None, :, None, :]
- atom14_gt_positions[..., None, :, None, :, :]
)
** 2,
dim=-1,
)
)
atom14_alt_gt_positions = batch["atom14_alt_gt_positions"]
alt_gt_dists = torch.sqrt(
eps
+ torch.sum(
(
atom14_alt_gt_positions[..., None, :, None, :]
- atom14_alt_gt_positions[..., None, :, None, :, :]
)
** 2,
dim=-1,
)
)
lddt = torch.sqrt(eps + (pred_dists - gt_dists) ** 2)
alt_lddt = torch.sqrt(eps + (pred_dists - alt_gt_dists) ** 2)
atom14_gt_exists = batch["atom14_atom_exists_in_gt"]
atom14_atom_is_ambiguous = batch["atom14_atom_is_ambiguous"]
mask = (
atom14_gt_exists[..., None, :, None]
* atom14_atom_is_ambiguous[..., None, :, None]
* atom14_gt_exists[..., None, :, None, :]
* (1.0 - atom14_atom_is_ambiguous[..., None, :, None, :])
)
per_res_lddt = torch.sum(mask * lddt, dim=(-1, -2, -3))
alt_per_res_lddt = torch.sum(mask * alt_lddt, dim=(-1, -2, -3))
fp_type = atom14_pred_positions.dtype
alt_naming_is_better = (alt_per_res_lddt < per_res_lddt).type(fp_type)
renamed_atom14_gt_positions = (
1.0 - alt_naming_is_better[..., None, None]
) * atom14_gt_positions + alt_naming_is_better[
..., None, None
] * atom14_alt_gt_positions
renamed_atom14_gt_mask = (
1.0 - alt_naming_is_better[..., None]
) * atom14_gt_exists + alt_naming_is_better[..., None] * batch[
"atom14_alt_gt_exists"
]
return {
"alt_naming_is_better": alt_naming_is_better,
"renamed_atom14_gt_positions": renamed_atom14_gt_positions,
"renamed_atom14_gt_exists": renamed_atom14_gt_mask,
}
def binding_site_loss(
logits: torch.Tensor,
binding_site_mask: torch.Tensor,
structural_mask: torch.Tensor,
pos_class_weight: float,
**kwargs,
) -> torch.Tensor:
logits = logits.squeeze(-1)
bce_loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, binding_site_mask, reduction='none',
pos_weight=logits.new_tensor([pos_class_weight]))
masked_loss = bce_loss * structural_mask
final_loss = masked_loss.sum() / structural_mask.sum()
return final_loss
def chain_center_of_mass_loss(
all_atom_pred_pos: torch.Tensor,
all_atom_positions: torch.Tensor,
all_atom_mask: torch.Tensor,
asym_id: torch.Tensor,
clamp_distance: float = -4.0,
weight: float = 0.05,
eps: float = 1e-10, **kwargs
) -> torch.Tensor:
"""
Computes chain centre-of-mass loss. Implements section 2.5, eqn 1 in the Multimer paper.
Args:
all_atom_pred_pos:
[*, N_pts, 37, 3] All-atom predicted atom positions
all_atom_positions:
[*, N_pts, 37, 3] Ground truth all-atom positions
all_atom_mask:
[*, N_pts, 37] All-atom positions mask
asym_id:
[*, N_pts] Chain asym IDs
clamp_distance:
Cutoff above which distance errors are disregarded
weight:
Weight for loss
eps:
Small value used to regularize denominators
Returns:
[*] loss tensor
"""
ca_pos = residue_constants.atom_order["CA"]
all_atom_pred_pos = all_atom_pred_pos[..., ca_pos, :]
all_atom_positions = all_atom_positions[..., ca_pos, :]
all_atom_mask = all_atom_mask[..., ca_pos: (ca_pos + 1)] # keep dim
one_hot = torch.nn.functional.one_hot(asym_id.long()).to(dtype=all_atom_mask.dtype)
one_hot = one_hot * all_atom_mask
chain_pos_mask = one_hot.transpose(-2, -1)
chain_exists = torch.any(chain_pos_mask, dim=-1).to(dtype=all_atom_positions.dtype)
def get_chain_center_of_mass(pos):
center_sum = (chain_pos_mask[..., None] * pos[..., None, :, :]).sum(dim=-2)
centers = center_sum / (torch.sum(chain_pos_mask, dim=-1, keepdim=True) + eps)
return Vec3Array.from_array(centers)
pred_centers = get_chain_center_of_mass(all_atom_pred_pos) # [B, NC, 3]
true_centers = get_chain_center_of_mass(all_atom_positions) # [B, NC, 3]
pred_dists = euclidean_distance(pred_centers[..., None, :], pred_centers[..., :, None], epsilon=eps)
true_dists = euclidean_distance(true_centers[..., None, :], true_centers[..., :, None], epsilon=eps)
losses = torch.clamp((weight * (pred_dists - true_dists - clamp_distance)), max=0) ** 2
loss_mask = chain_exists[..., :, None] * chain_exists[..., None, :]
loss = masked_mean(loss_mask, losses, dim=(-1, -2))
return loss
class AlphaFoldLoss(nn.Module):
"""Aggregation of the various losses described in the supplement"""
def __init__(self, config):
super(AlphaFoldLoss, self).__init__()
self.config = config
def loss(self, out, batch, _return_breakdown=False):
"""
Rename previous forward() as loss()
so that can be reused in the subclass
"""
if "renamed_atom14_gt_positions" not in out.keys():
batch.update(
compute_renamed_ground_truth(
batch,
out["sm"]["positions"][-1],
)
)
loss_fns = {
"distogram": lambda: distogram_loss(
logits=out["distogram_logits"],
**{**batch, **self.config.distogram},
),
"affinity2d": lambda: affinity_loss(
logits=out["affinity_2d_logits"],
**{**batch, **self.config.affinity2d},
),
"affinity_cls": lambda: affinity_loss(
logits=out["affinity_cls_logits"],
**{**batch, **self.config.affinity_cls},
),
"binding_site": lambda: binding_site_loss(
logits=out["binding_site_logits"],
**{**batch, **self.config.binding_site},
),
"inter_contact": lambda: inter_contact_loss(
logits=out["inter_contact_logits"],
**{**batch, **self.config.inter_contact},
),
# backbone is based on frames so only works on protein
"fape_backbone": lambda: fape_bb(
out,
batch,
self.config.fape_backbone,
),
"fape_sidechain": lambda: fape_sidechain(
out,
batch,
self.config.fape_sidechain,
),
"fape_interface": lambda: fape_interface(
out,
batch,
self.config.fape_interface,
),
"plddt_loss": lambda: lddt_loss(
logits=out["lddt_logits"],
all_atom_pred_pos=out["final_atom_positions"],
**{**batch, **self.config.plddt_loss},
),
"supervised_chi": lambda: supervised_chi_loss(
out["sm"]["angles"],
out["sm"]["unnormalized_angles"],
**{**batch, **self.config.supervised_chi},
),
}
if self.config.chain_center_of_mass.enabled:
loss_fns["chain_center_of_mass"] = lambda: chain_center_of_mass_loss(
all_atom_pred_pos=out["final_atom_positions"],
**{**batch, **self.config.chain_center_of_mass},
)
cum_loss = 0.
losses = {}
loss_time_took = {}
for loss_name, loss_fn in loss_fns.items():
start_time = time.time()
weight = self.config[loss_name].weight
loss = loss_fn()
if torch.isnan(loss) or torch.isinf(loss):
# for k,v in batch.items():
# if torch.any(torch.isnan(v)) or torch.any(torch.isinf(v)):
# logging.warning(f"{k}: is nan")
# logging.warning(f"{loss_name}: {loss}")
logging.warning(f"{loss_name} loss is NaN. Skipping...")
loss = loss.new_tensor(0., requires_grad=True)
# else:
cum_loss = cum_loss + weight * loss
losses[loss_name] = loss.detach().clone()
loss_time_took[loss_name] = time.time() - start_time
losses["unscaled_loss"] = cum_loss.detach().clone()
# print("loss took: ", round(time.time() % 10000, 3),
# sorted(loss_time_took.items(), key=lambda x: x[1], reverse=True))
# Scale the loss by the square root of the minimum of the crop size and
# the (average) sequence length. See subsection 1.9.
seq_len = torch.mean(batch["seq_length"].float())
crop_len = batch["aatype"].shape[-1]
cum_loss = cum_loss * torch.sqrt(min(seq_len, crop_len))
losses["loss"] = cum_loss.detach().clone()
if not _return_breakdown:
return cum_loss
return cum_loss, losses
def forward(self, out, batch, _return_breakdown=False):
if not _return_breakdown:
cum_loss = self.loss(out, batch, _return_breakdown)
return cum_loss
else:
cum_loss, losses = self.loss(out, batch, _return_breakdown)
return cum_loss, losses