Spaces:
Sleeping
Sleeping
# Copyright 2021 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Vec3Array Class.""" | |
from __future__ import annotations | |
import dataclasses | |
from typing import Union, List | |
import torch | |
Float = Union[float, torch.Tensor] | |
class Vec3Array: | |
x: torch.Tensor = dataclasses.field(metadata={'dtype': torch.float32}) | |
y: torch.Tensor | |
z: torch.Tensor | |
def __post_init__(self): | |
if hasattr(self.x, 'dtype'): | |
assert self.x.dtype == self.y.dtype | |
assert self.x.dtype == self.z.dtype | |
assert all([x == y for x, y in zip(self.x.shape, self.y.shape)]) | |
assert all([x == z for x, z in zip(self.x.shape, self.z.shape)]) | |
def __add__(self, other: Vec3Array) -> Vec3Array: | |
return Vec3Array( | |
self.x + other.x, | |
self.y + other.y, | |
self.z + other.z, | |
) | |
def __sub__(self, other: Vec3Array) -> Vec3Array: | |
return Vec3Array( | |
self.x - other.x, | |
self.y - other.y, | |
self.z - other.z, | |
) | |
def __mul__(self, other: Float) -> Vec3Array: | |
return Vec3Array( | |
self.x * other, | |
self.y * other, | |
self.z * other, | |
) | |
def __rmul__(self, other: Float) -> Vec3Array: | |
return self * other | |
def __truediv__(self, other: Float) -> Vec3Array: | |
return Vec3Array( | |
self.x / other, | |
self.y / other, | |
self.z / other, | |
) | |
def __neg__(self) -> Vec3Array: | |
return self * -1 | |
def __pos__(self) -> Vec3Array: | |
return self * 1 | |
def __getitem__(self, index) -> Vec3Array: | |
return Vec3Array( | |
self.x[index], | |
self.y[index], | |
self.z[index], | |
) | |
def __iter__(self): | |
return iter((self.x, self.y, self.z)) | |
def shape(self): | |
return self.x.shape | |
def map_tensor_fn(self, fn) -> Vec3Array: | |
return Vec3Array( | |
fn(self.x), | |
fn(self.y), | |
fn(self.z), | |
) | |
def cross(self, other: Vec3Array) -> Vec3Array: | |
"""Compute cross product between 'self' and 'other'.""" | |
new_x = self.y * other.z - self.z * other.y | |
new_y = self.z * other.x - self.x * other.z | |
new_z = self.x * other.y - self.y * other.x | |
return Vec3Array(new_x, new_y, new_z) | |
def dot(self, other: Vec3Array) -> Float: | |
"""Compute dot product between 'self' and 'other'.""" | |
return self.x * other.x + self.y * other.y + self.z * other.z | |
def norm(self, epsilon: float = 1e-6) -> Float: | |
"""Compute Norm of Vec3Array, clipped to epsilon.""" | |
# To avoid NaN on the backward pass, we must use maximum before the sqrt | |
norm2 = self.dot(self) | |
if epsilon: | |
norm2 = torch.clamp(norm2, min=epsilon**2) | |
return torch.sqrt(norm2) | |
def norm2(self): | |
return self.dot(self) | |
def normalized(self, epsilon: float = 1e-6) -> Vec3Array: | |
"""Return unit vector with optional clipping.""" | |
return self / self.norm(epsilon) | |
def clone(self) -> Vec3Array: | |
return Vec3Array( | |
self.x.clone(), | |
self.y.clone(), | |
self.z.clone(), | |
) | |
def reshape(self, new_shape) -> Vec3Array: | |
x = self.x.reshape(new_shape) | |
y = self.y.reshape(new_shape) | |
z = self.z.reshape(new_shape) | |
return Vec3Array(x, y, z) | |
def sum(self, dim: int) -> Vec3Array: | |
return Vec3Array( | |
torch.sum(self.x, dim=dim), | |
torch.sum(self.y, dim=dim), | |
torch.sum(self.z, dim=dim), | |
) | |
def unsqueeze(self, dim: int): | |
return Vec3Array( | |
self.x.unsqueeze(dim), | |
self.y.unsqueeze(dim), | |
self.z.unsqueeze(dim), | |
) | |
def zeros(cls, shape, device="cpu"): | |
"""Return Vec3Array corresponding to zeros of given shape.""" | |
return cls( | |
torch.zeros(shape, dtype=torch.float32, device=device), | |
torch.zeros(shape, dtype=torch.float32, device=device), | |
torch.zeros(shape, dtype=torch.float32, device=device) | |
) | |
def to_tensor(self) -> torch.Tensor: | |
return torch.stack([self.x, self.y, self.z], dim=-1) | |
def from_array(cls, tensor): | |
return cls(*torch.unbind(tensor, dim=-1)) | |
def cat(cls, vecs: List[Vec3Array], dim: int) -> Vec3Array: | |
return cls( | |
torch.cat([v.x for v in vecs], dim=dim), | |
torch.cat([v.y for v in vecs], dim=dim), | |
torch.cat([v.z for v in vecs], dim=dim), | |
) | |
def square_euclidean_distance( | |
vec1: Vec3Array, | |
vec2: Vec3Array, | |
epsilon: float = 1e-6 | |
) -> Float: | |
"""Computes square of euclidean distance between 'vec1' and 'vec2'. | |
Args: | |
vec1: Vec3Array to compute distance to | |
vec2: Vec3Array to compute distance from, should be | |
broadcast compatible with 'vec1' | |
epsilon: distance is clipped from below to be at least epsilon | |
Returns: | |
Array of square euclidean distances; | |
shape will be result of broadcasting 'vec1' and 'vec2' | |
""" | |
difference = vec1 - vec2 | |
distance = difference.dot(difference) | |
if epsilon: | |
distance = torch.clamp(distance, min=epsilon) | |
return distance | |
def dot(vector1: Vec3Array, vector2: Vec3Array) -> Float: | |
return vector1.dot(vector2) | |
def cross(vector1: Vec3Array, vector2: Vec3Array) -> Float: | |
return vector1.cross(vector2) | |
def norm(vector: Vec3Array, epsilon: float = 1e-6) -> Float: | |
return vector.norm(epsilon) | |
def normalized(vector: Vec3Array, epsilon: float = 1e-6) -> Vec3Array: | |
return vector.normalized(epsilon) | |
def euclidean_distance( | |
vec1: Vec3Array, | |
vec2: Vec3Array, | |
epsilon: float = 1e-6 | |
) -> Float: | |
"""Computes euclidean distance between 'vec1' and 'vec2'. | |
Args: | |
vec1: Vec3Array to compute euclidean distance to | |
vec2: Vec3Array to compute euclidean distance from, should be | |
broadcast compatible with 'vec1' | |
epsilon: distance is clipped from below to be at least epsilon | |
Returns: | |
Array of euclidean distances; | |
shape will be result of broadcasting 'vec1' and 'vec2' | |
""" | |
distance_sq = square_euclidean_distance(vec1, vec2, epsilon**2) | |
distance = torch.sqrt(distance_sq) | |
return distance | |
def dihedral_angle(a: Vec3Array, b: Vec3Array, c: Vec3Array, | |
d: Vec3Array) -> Float: | |
"""Computes torsion angle for a quadruple of points. | |
For points (a, b, c, d), this is the angle between the planes defined by | |
points (a, b, c) and (b, c, d). It is also known as the dihedral angle. | |
Arguments: | |
a: A Vec3Array of coordinates. | |
b: A Vec3Array of coordinates. | |
c: A Vec3Array of coordinates. | |
d: A Vec3Array of coordinates. | |
Returns: | |
A tensor of angles in radians: [-pi, pi]. | |
""" | |
v1 = a - b | |
v2 = b - c | |
v3 = d - c | |
c1 = v1.cross(v2) | |
c2 = v3.cross(v2) | |
c3 = c2.cross(c1) | |
v2_mag = v2.norm() | |
return torch.atan2(c3.dot(v2), v2_mag * c1.dot(c2)) | |