Spaces:
Runtime error
Runtime error
| # Copyright 2021 AlQuraishi Laboratory | |
| # Copyright 2021 DeepMind Technologies Limited | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from functools import partialmethod | |
| from typing import Optional | |
| from abc import ABC, abstractmethod | |
| import torch | |
| import torch.nn as nn | |
| from dockformer.model.primitives import Linear, LayerNorm | |
| from dockformer.utils.precision_utils import is_fp16_enabled | |
| from dockformer.utils.tensor_utils import permute_final_dims | |
| class BaseTriangleMultiplicativeUpdate(nn.Module, ABC): | |
| """ | |
| Implements Algorithms 11 and 12. | |
| """ | |
| def __init__(self, c_z, c_hidden, _outgoing): | |
| """ | |
| Args: | |
| c_z: | |
| Input channel dimension | |
| c: | |
| Hidden channel dimension | |
| """ | |
| super(BaseTriangleMultiplicativeUpdate, self).__init__() | |
| self.c_z = c_z | |
| self.c_hidden = c_hidden | |
| self._outgoing = _outgoing | |
| self.linear_g = Linear(self.c_z, self.c_z, init="gating") | |
| self.linear_z = Linear(self.c_hidden, self.c_z, init="final") | |
| self.layer_norm_in = LayerNorm(self.c_z) | |
| self.layer_norm_out = LayerNorm(self.c_hidden) | |
| self.sigmoid = nn.Sigmoid() | |
| def _combine_projections(self, | |
| a: torch.Tensor, | |
| b: torch.Tensor, | |
| ) -> torch.Tensor: | |
| if(self._outgoing): | |
| a = permute_final_dims(a, (2, 0, 1)) | |
| b = permute_final_dims(b, (2, 1, 0)) | |
| else: | |
| a = permute_final_dims(a, (2, 1, 0)) | |
| b = permute_final_dims(b, (2, 0, 1)) | |
| p = torch.matmul(a, b) | |
| return permute_final_dims(p, (1, 2, 0)) | |
| def forward(self, | |
| z: torch.Tensor, | |
| mask: Optional[torch.Tensor] = None, | |
| inplace_safe: bool = False, | |
| _add_with_inplace: bool = False | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| x: | |
| [*, N_res, N_res, C_z] input tensor | |
| mask: | |
| [*, N_res, N_res] input mask | |
| Returns: | |
| [*, N_res, N_res, C_z] output tensor | |
| """ | |
| pass | |
| class TriangleMultiplicativeUpdate(BaseTriangleMultiplicativeUpdate): | |
| """ | |
| Implements Algorithms 11 and 12. | |
| """ | |
| def __init__(self, c_z, c_hidden, _outgoing=True): | |
| """ | |
| Args: | |
| c_z: | |
| Input channel dimension | |
| c: | |
| Hidden channel dimension | |
| """ | |
| super(TriangleMultiplicativeUpdate, self).__init__(c_z=c_z, | |
| c_hidden=c_hidden, | |
| _outgoing=_outgoing) | |
| self.linear_a_p = Linear(self.c_z, self.c_hidden) | |
| self.linear_a_g = Linear(self.c_z, self.c_hidden, init="gating") | |
| self.linear_b_p = Linear(self.c_z, self.c_hidden) | |
| self.linear_b_g = Linear(self.c_z, self.c_hidden, init="gating") | |
| def forward(self, | |
| z: torch.Tensor, | |
| mask: Optional[torch.Tensor] = None, | |
| inplace_safe: bool = False, | |
| _add_with_inplace: bool = False, | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| x: | |
| [*, N_res, N_res, C_z] input tensor | |
| mask: | |
| [*, N_res, N_res] input mask | |
| Returns: | |
| [*, N_res, N_res, C_z] output tensor | |
| """ | |
| if mask is None: | |
| mask = z.new_ones(z.shape[:-1]) | |
| mask = mask.unsqueeze(-1) | |
| z = self.layer_norm_in(z) | |
| a = mask | |
| a = a * self.sigmoid(self.linear_a_g(z)) | |
| a = a * self.linear_a_p(z) | |
| b = mask | |
| b = b * self.sigmoid(self.linear_b_g(z)) | |
| b = b * self.linear_b_p(z) | |
| # Prevents overflow of torch.matmul in combine projections in | |
| # reduced-precision modes | |
| a_std = a.std() | |
| b_std = b.std() | |
| if(is_fp16_enabled() and a_std != 0. and b_std != 0.): | |
| a = a / a.std() | |
| b = b / b.std() | |
| if(is_fp16_enabled()): | |
| with torch.cuda.amp.autocast(enabled=False): | |
| x = self._combine_projections(a.float(), b.float()) | |
| else: | |
| x = self._combine_projections(a, b) | |
| del a, b | |
| x = self.layer_norm_out(x) | |
| x = self.linear_z(x) | |
| g = self.sigmoid(self.linear_g(z)) | |
| x = x * g | |
| return x | |
| class TriangleMultiplicationOutgoing(TriangleMultiplicativeUpdate): | |
| """ | |
| Implements Algorithm 11. | |
| """ | |
| __init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=True) | |
| class TriangleMultiplicationIncoming(TriangleMultiplicativeUpdate): | |
| """ | |
| Implements Algorithm 12. | |
| """ | |
| __init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=False) | |