Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| import pandas as pd | |
| from pycaret.regression import load_model, predict_model | |
| from fastapi import FastAPI | |
| import uvicorn | |
| from pydantic import create_model | |
| # Create the app | |
| app = FastAPI() | |
| # Load trained Pipeline | |
| model = load_model("final_api") | |
| # Create input/output pydantic models | |
| input_model = create_model("final_api_input", **{'Relacion Na2SiO3/NaOH': 3.0, 'Contenido de Na2SiO3 (mL)': 33.79999923706055, 'Contenido de NaOH (mL)': 11.300000190734863, 'Contenido de extra agua (mL)': 9.100000381469727, 'Temperatura de Curado (C)': 80.0, 'Total liquido/binder (zeolita)': 0.6000000238418579, 'Activador/zeolita': 0.5, 'tiempo de curado (dias) total': 7.0}) | |
| output_model = create_model("final_api_output",prediction=7.53) | |
| # Define predict function | |
| def predict(data: input_model): | |
| data = pd.DataFrame([data.dict()]) | |
| predictions = predict_model(model, data=data) | |
| return {"prediction": predictions["prediction_label"].iloc[0]} | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="127.0.0.1", port=8000) | |