code_compiler / app.py
MLDeveloper's picture
Update app.py
f62fef5 verified
raw
history blame
1.66 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load CodeT5 model from Hugging Face
MODEL_NAME = "Salesforce/codet5-large"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
def translate_code(code_snippet, source_lang, target_lang):
"""
Translate code using CodeT5 model.
"""
prompt = f"""Translate this {source_lang} code to {target_lang}:
{code_snippet}"""
# Tokenize and generate translation
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
outputs = model.generate(**inputs, max_length=512)
# Decode the output
translated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
return translated_code
# Streamlit UI
st.title("🔄 AI Code Translator")
st.write("Convert code between Python, Java, C++, and C.")
languages = ["Python", "Java", "C++", "C"]
source_lang = st.selectbox("Select Source Language", languages)
target_lang = st.selectbox("Select Target Language", languages)
code_input = st.text_area("Enter your code:", height=200)
if st.button("Translate"):
if source_lang == target_lang:
st.warning("⚠️ Source and target languages must be different!")
elif not code_input.strip():
st.warning("⚠️ Please enter some code before translating.")
else:
with st.spinner("Translating... ⏳"):
translated_code = translate_code(code_input, source_lang, target_lang)
st.subheader(f"Translated {target_lang} Code:")
st.code(translated_code, language=target_lang.lower())