code_compiler / app.py
MLDeveloper's picture
Update app.py
c8b2e06 verified
raw
history blame
5.63 kB
import streamlit as st
import subprocess
import sys
import io
import os
import shutil # For checking dependencies
import requests
import google.generativeai as genai # Gemini API
# Ensure Java and g++ are installed (for cloud environments)
if not shutil.which("javac"):
os.system("apt-get update && apt-get install -y default-jdk g++")
# Function to execute Python code
def execute_python(code, user_input):
old_stdout = sys.stdout
redirected_output = io.StringIO()
sys.stdout = redirected_output
input_values = user_input.strip().split("\n")
input_counter = 0
def mock_input(prompt=""):
nonlocal input_counter
if input_counter < len(input_values):
value = input_values[input_counter]
input_counter += 1
return value
else:
raise ValueError("Not enough inputs provided.")
try:
exec(code, {"input": mock_input})
output = redirected_output.getvalue()
except Exception as e:
output = f"Error: {str(e)}"
finally:
sys.stdout = old_stdout
return output.strip()
# Function to execute Java code
def execute_java(code, user_input):
if not shutil.which("javac"):
return "Error: Java JDK is not installed. Please install it using 'apt-get install default-jdk'."
with open("Main.java", "w") as file:
file.write(code)
compile_process = subprocess.run(["javac", "Main.java"], capture_output=True, text=True)
if compile_process.returncode != 0:
return f"Compilation Error:\n{compile_process.stderr}"
run_process = subprocess.run(["java", "Main"], input=user_input.encode(), capture_output=True, text=True)
return run_process.stdout if run_process.returncode == 0 else f"Runtime Error:\n{run_process.stderr}"
# Function to execute C++ code
def execute_cpp(code, user_input):
if not shutil.which("g++"):
return "Error: C++ Compiler is not installed. Please install it using 'apt-get install g++'."
with open("main.cpp", "w") as file:
file.write(code)
compile_process = subprocess.run(["g++", "main.cpp", "-o", "main"], capture_output=True, text=True)
if compile_process.returncode != 0:
return f"Compilation Error:\n{compile_process.stderr}"
run_process = subprocess.run(["./main"], input=user_input.encode(), capture_output=True, text=True)
return run_process.stdout if run_process.returncode == 0 else f"Runtime Error:\n{run_process.stderr}"
# Streamlit UI for Code Execution
st.title("💻 Multi-Language Code Runner")
st.write("Write your Python, Java, or C++ code and get the correct output!")
languages = ["Python", "Java", "C++"]
selected_lang = st.selectbox("Select Language:", languages)
code_input = st.text_area("Enter your code:", height=200)
user_input = st.text_area("Enter input values (one per line):", height=100)
if st.button("Run Code"):
if code_input.strip():
with st.spinner("Executing..."):
if selected_lang == "Python":
output = execute_python(code_input, user_input)
elif selected_lang == "Java":
output = execute_java(code_input, user_input)
elif selected_lang == "C++":
output = execute_cpp(code_input, user_input)
st.subheader("Output:")
st.code(output, language="plaintext")
else:
st.warning("⚠️ Please enter some code before running.")
# V1 without gemini api
# import streamlit as st
# import requests
# import os # Import os to access environment variables
# # Get API token from environment variable
# API_TOKEN = os.getenv("HF_API_TOKEN")
# # Change MODEL_ID to a better model
# MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
# # MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2
# # MODEL_ID = "bigcode/starcoder"
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
# HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
# def translate_code(code_snippet, source_lang, target_lang):
# """Translate code using Hugging Face API securely."""
# prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
# response = requests.post(API_URL, headers=HEADERS, json={
# "inputs": prompt,
# "parameters": {
# "max_new_tokens": 150,
# "temperature": 0.2,
# "top_k": 50
# # "stop": ["\n\n", "#", "//", "'''"]
# }
# })
# if response.status_code == 200:
# generated_text = response.json()[0]["generated_text"]
# translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
# return translated_code
# else:
# return f"Error: {response.status_code}, {response.text}"
# # Streamlit UI
# st.title("🔄 Code Translator using StarCoder")
# st.write("Translate code between different programming languages using AI.")
# languages = ["Python", "Java", "C++", "C"]
# source_lang = st.selectbox("Select source language", languages)
# target_lang = st.selectbox("Select target language", languages)
# code_input = st.text_area("Enter your code here:", height=200)
# if st.button("Translate"):
# if code_input.strip():
# with st.spinner("Translating..."):
# translated_code = translate_code(code_input, source_lang, target_lang)
# st.subheader("Translated Code:")
# st.code(translated_code, language=target_lang.lower())
# else:
# st.warning("⚠️ Please enter some code before translating.")