code_compiler / app.py
Krish-Upgrix's picture
Upload 2 files
0db8ade verified
raw
history blame
1.97 kB
import streamlit as st
import requests
import os # Import os to access environment variables
# Get API token from environment variable
API_TOKEN = os.getenv("HF_API_TOKEN") # Fetch token securely
MODEL_ID = "bigcode/starcoder"
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
def translate_code(code_snippet, source_lang, target_lang):
"""Translate code using Hugging Face API securely."""
prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
response = requests.post(API_URL, headers=HEADERS, json={
"inputs": prompt,
"parameters": {
"max_new_tokens": 150,
"temperature": 0.2,
"top_k": 50,
"stop": ["\n\n", "#", "//", "'''"]
}
})
if response.status_code == 200:
generated_text = response.json()[0]["generated_text"]
translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
return translated_code
else:
return f"Error: {response.status_code}, {response.text}"
# Streamlit UI
st.title("🔄 Code Translator using StarCoder")
st.write("Translate code between different programming languages using AI.")
languages = ["Python", "Java", "C++", "C"]
source_lang = st.selectbox("Select source language", languages)
target_lang = st.selectbox("Select target language", languages)
code_input = st.text_area("Enter your code here:", height=200)
if st.button("Translate"):
if code_input.strip():
with st.spinner("Translating..."):
translated_code = translate_code(code_input, source_lang, target_lang)
st.subheader("Translated Code:")
st.code(translated_code, language=target_lang.lower())
else:
st.warning("⚠️ Please enter some code before translating.")