Abubakar740 commited on
Commit
2232b2c
·
1 Parent(s): 2438336

Upload LDR to HDR application files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +339 -0
  2. best_ldr.py +327 -0
  3. checkpoints/ldr2hdr_cyclegan_728/latest_net_G.pth +3 -0
  4. data/__init__.py +107 -0
  5. data/__pycache__/__init__.cpython-312.pyc +0 -0
  6. data/__pycache__/aligned_dataset.cpython-312.pyc +0 -0
  7. data/__pycache__/base_dataset.cpython-312.pyc +0 -0
  8. data/__pycache__/image_folder.cpython-312.pyc +0 -0
  9. data/__pycache__/single_dataset.cpython-312.pyc +0 -0
  10. data/__pycache__/unaligned_dataset.cpython-312.pyc +0 -0
  11. data/aligned_dataset.py +60 -0
  12. data/base_dataset.py +167 -0
  13. data/colorization_dataset.py +69 -0
  14. data/image_folder.py +72 -0
  15. data/single_dataset.py +40 -0
  16. data/template_dataset.py +78 -0
  17. data/unaligned_dataset.py +71 -0
  18. models/__init__.py +58 -0
  19. models/__pycache__/__init__.cpython-312.pyc +0 -0
  20. models/__pycache__/base_model.cpython-312.pyc +0 -0
  21. models/__pycache__/cycle_gan_model.cpython-312.pyc +0 -0
  22. models/__pycache__/networks.cpython-312.pyc +0 -0
  23. models/__pycache__/pix2pix_model.cpython-312.pyc +0 -0
  24. models/__pycache__/test_model.cpython-312.pyc +0 -0
  25. models/base_model.py +306 -0
  26. models/colorization_model.py +69 -0
  27. models/cycle_gan_model.py +196 -0
  28. models/networks.py +588 -0
  29. models/pix2pix_model.py +127 -0
  30. models/template_model.py +100 -0
  31. models/test_model.py +69 -0
  32. options/__init__.py +1 -0
  33. options/__pycache__/__init__.cpython-312.pyc +0 -0
  34. options/__pycache__/base_options.cpython-312.pyc +0 -0
  35. options/__pycache__/test_options.cpython-312.pyc +0 -0
  36. options/__pycache__/train_options.cpython-312.pyc +0 -0
  37. options/base_options.py +127 -0
  38. options/test_options.py +23 -0
  39. options/train_options.py +35 -0
  40. requirements.txt +8 -0
  41. util/__init__.py +1 -0
  42. util/__pycache__/__init__.cpython-312.pyc +0 -0
  43. util/__pycache__/html.cpython-312.pyc +0 -0
  44. util/__pycache__/image_pool.cpython-312.pyc +0 -0
  45. util/__pycache__/util.cpython-312.pyc +0 -0
  46. util/__pycache__/visualizer.cpython-312.pyc +0 -0
  47. util/get_data.py +107 -0
  48. util/html.py +84 -0
  49. util/image_pool.py +54 -0
  50. util/util.py +130 -0
app.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ # import gradio as gr
5
+ # import torch
6
+ # import os
7
+ # import tempfile
8
+ # import shutil
9
+ # from PIL import Image
10
+ # import numpy as np
11
+ # from pathlib import Path
12
+ # import sys
13
+ # import copy
14
+
15
+ # # --- Import logic from your project ---
16
+ # from options.test_options import TestOptions
17
+ # from data import create_dataset
18
+ # from models import create_model
19
+ # try:
20
+ # from best_ldr import compute_metrics_for_images, score_records
21
+ # except ImportError:
22
+ # raise ImportError("Could not import from best_ldr.py. Make sure the file is in the same directory as app.py.")
23
+
24
+ # print("--- Initializing LDR-to-HDR Model (this may take a moment) ---")
25
+
26
+ # # --- Global Setup: Load the CycleGAN model once when the app starts ---
27
+
28
+ # # We need to satisfy the parser's requirement for a dataroot at startup
29
+ # if '--dataroot' not in sys.argv:
30
+ # sys.argv.extend(['--dataroot', './dummy_dataroot_for_init'])
31
+
32
+ # # Load the base options
33
+ # opt = TestOptions().parse()
34
+
35
+ # # Manually override settings for our model
36
+ # opt.name = 'ldr2hdr_cyclegan_728'
37
+ # opt.model = 'test'
38
+ # opt.netG = 'resnet_9blocks'
39
+ # opt.norm = 'instance'
40
+ # opt.no_dropout = True
41
+ # opt.checkpoints_dir = './checkpoints'
42
+ # opt.gpu_ids = [0] if torch.cuda.is_available() else []
43
+ # opt.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu')
44
+
45
+ # # Create the model using these options
46
+ # model = create_model(opt)
47
+ # model.setup(opt)
48
+ # model.eval()
49
+
50
+ # print("--- Model Loaded Successfully ---")
51
+
52
+
53
+ # # --- Helper Function for Inference ---
54
+
55
+ # def run_inference(model, image_path, process_options):
56
+ # """
57
+ # A reusable function to run the model with specific preprocessing options.
58
+ # """
59
+ # # Deep copy the base options to avoid modifying the global state
60
+ # local_opt = copy.deepcopy(opt)
61
+
62
+ # # Apply the specific settings for this run
63
+ # for key, value in process_options.items():
64
+ # setattr(local_opt, key, value)
65
+
66
+ # with tempfile.TemporaryDirectory() as temp_dir:
67
+ # shutil.copy(image_path, temp_dir)
68
+ # local_opt.dataroot = temp_dir
69
+ # local_opt.num_test = 1
70
+ # dataset = create_dataset(local_opt)
71
+
72
+ # for i, data in enumerate(dataset):
73
+ # model.set_input(data)
74
+ # model.test()
75
+ # visuals = model.get_current_visuals()
76
+
77
+ # for label, image_tensor in visuals.items():
78
+ # if label == 'fake':
79
+ # image_numpy = (np.transpose(image_tensor.cpu().float().numpy()[0], (1, 2, 0)) + 1) / 2.0 * 255.0
80
+ # return Image.fromarray(image_numpy.astype(np.uint8))
81
+
82
+ # # --- The Main Gradio Processing Function ---
83
+
84
+ # def process_images_and_display(list_of_temp_files):
85
+ # """
86
+ # The main workflow: select best LDR, then run two inference modes.
87
+ # """
88
+ # if not list_of_temp_files:
89
+ # raise gr.Error("Please upload your bracketed LDR images.")
90
+ # if len(list_of_temp_files) < 2:
91
+ # gr.Warning("For best results, upload at least 2 bracketed LDR images.")
92
+
93
+ # uploaded_filepaths = [Path(f.name) for f in list_of_temp_files]
94
+
95
+ # try:
96
+ # # --- Step 1: Select the Best LDR ---
97
+ # print(f"Analyzing {len(uploaded_filepaths)} uploaded images...")
98
+ # weights = {"clipped": 0.35, "coverage": 0.25, "exposure": 0.15, "sharpness": 0.15, "noise": 0.10}
99
+ # records = compute_metrics_for_images(uploaded_filepaths, resize_max=1024)
100
+ # scored_records = score_records(records, weights)
101
+ # if not scored_records:
102
+ # raise gr.Error("Could not read or score any of the uploaded images.")
103
+
104
+ # best_ldr_record = scored_records[0]
105
+ # best_ldr_path = best_ldr_record['path']
106
+ # print(f"Best LDR selected: {os.path.basename(best_ldr_path)} (Score: {best_ldr_record['score']:.4f})")
107
+ # chosen_ldr_image = Image.open(best_ldr_path).convert("RGB")
108
+
109
+ # # --- Step 2: Run Inference in Both Modes ---
110
+
111
+ # # Mode A: High-Quality Crop (at model's native resolution)
112
+ # print("Running Mode A: High-Quality Crop...")
113
+ # crop_options = {
114
+ # 'preprocess': 'resize_and_crop',
115
+ # 'load_size': 728,
116
+ # 'crop_size': 728
117
+ # }
118
+ # hdr_cropped = run_inference(model, best_ldr_path, crop_options)
119
+ # print("Mode A successful.")
120
+
121
+ # # Mode B: Full Image (at a higher resolution)
122
+ # print("Running Mode B: Full Image (High-Res Scaled)...")
123
+ # scale_options = {
124
+ # 'preprocess': 'scale_width',
125
+ # 'load_size': 1024, # <-- THIS IS THE CHANGE FOR HIGHER RESOLUTION
126
+ # 'crop_size': 728 # This value is ignored by scale_width but needs to be present
127
+ # }
128
+ # hdr_scaled = run_inference(model, best_ldr_path, scale_options)
129
+ # print("Mode B successful.")
130
+
131
+ # # Return all the images to update the UI
132
+ # return uploaded_filepaths, chosen_ldr_image, hdr_cropped, hdr_scaled
133
+
134
+ # except Exception as e:
135
+ # print(f"An error occurred: {e}")
136
+ # raise gr.Error(f"An error occurred during processing: {e}")
137
+
138
+ # # --- Create and Launch the Gradio Interface ---
139
+
140
+ # with gr.Blocks(theme=gr.themes.Monochrome(), css="footer {display: none !important}") as demo:
141
+ # gr.Markdown("# LDR Bracketing to HDR Converter")
142
+ # gr.Markdown("Upload a set of bracketed LDR images. The app will automatically select the best one and convert it to HDR using two different methods for comparison.")
143
+
144
+ # with gr.Row():
145
+ # with gr.Column(scale=1, min_width=300):
146
+ # input_files = gr.Files(
147
+ # label="Upload Bracketed LDR Images",
148
+ # file_types=["image"]
149
+ # )
150
+ # process_button = gr.Button("Process Images", variant="primary")
151
+
152
+ # with gr.Accordion("See Your Uploads", open=False):
153
+ # input_gallery = gr.Gallery(label="Uploaded LDR Bracket", show_label=False, columns=3, height="auto")
154
+
155
+ # with gr.Column(scale=2):
156
+ # gr.Markdown("## Results")
157
+ # with gr.Row():
158
+ # chosen_ldr_display = gr.Image(label="Best LDR Chosen by Algorithm", type="pil", interactive=False)
159
+ # with gr.Row():
160
+ # output_cropped = gr.Image(label="Result 1: High-Quality Crop (728x728)", type="pil", interactive=False)
161
+ # output_scaled = gr.Image(label="Result 2: Full Image (Scaled to 1024px Width)", type="pil", interactive=False)
162
+
163
+ # process_button.click(
164
+ # fn=process_images_and_display,
165
+ # inputs=input_files,
166
+ # outputs=[input_gallery, chosen_ldr_display, output_cropped, output_scaled]
167
+ # )
168
+
169
+ # print("--- Launching Gradio App ---")
170
+ # demo.launch(share=True)
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+ import gradio as gr
181
+ import torch
182
+ import os
183
+ import tempfile
184
+ import shutil
185
+ from PIL import Image
186
+ import numpy as np
187
+ from pathlib import Path
188
+ import sys
189
+ import copy
190
+
191
+ # --- Import logic from your project ---
192
+ from options.test_options import TestOptions
193
+ from data import create_dataset
194
+ from models import create_model
195
+ try:
196
+ from best_ldr import compute_metrics_for_images, score_records
197
+ except ImportError:
198
+ raise ImportError("Could not import from best_ldr.py. Make sure the file is in the same directory as app.py.")
199
+
200
+ print("--- Initializing LDR-to-HDR Model (this may take a moment) ---")
201
+
202
+ # --- Global Setup: Load the CycleGAN model once when the app starts ---
203
+
204
+ # We need to satisfy the parser's requirement for a dataroot at startup
205
+ if '--dataroot' not in sys.argv:
206
+ sys.argv.extend(['--dataroot', './dummy_dataroot_for_init'])
207
+
208
+ # Load the base options
209
+ opt = TestOptions().parse()
210
+
211
+ # Manually override settings for our model
212
+ opt.name = 'ldr2hdr_cyclegan_728'
213
+ opt.model = 'test'
214
+ opt.netG = 'resnet_9blocks'
215
+ opt.norm = 'instance'
216
+ opt.no_dropout = True
217
+ opt.checkpoints_dir = './checkpoints'
218
+ opt.gpu_ids = [0] if torch.cuda.is_available() else []
219
+ opt.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu')
220
+
221
+ # Create the model using these options
222
+ model = create_model(opt)
223
+ model.setup(opt)
224
+ model.eval()
225
+
226
+ print("--- Model Loaded Successfully ---")
227
+
228
+
229
+ # --- The Main Gradio Processing Function ---
230
+
231
+ def process_images_to_hdr(list_of_temp_files):
232
+ """
233
+ The main workflow: select best LDR, run inference, and return results for the UI.
234
+ """
235
+ if not list_of_temp_files:
236
+ raise gr.Error("Please upload your bracketed LDR images.")
237
+ if len(list_of_temp_files) < 2:
238
+ gr.Warning("For best results, upload at least 2 bracketed LDR images.")
239
+
240
+ uploaded_filepaths = [Path(f.name) for f in list_of_temp_files]
241
+
242
+ try:
243
+ # --- Step 1: Select the Best LDR ---
244
+ print(f"Analyzing {len(uploaded_filepaths)} uploaded images...")
245
+ weights = {"clipped": 0.35, "coverage": 0.25, "exposure": 0.15, "sharpness": 0.15, "noise": 0.10}
246
+ records = compute_metrics_for_images(uploaded_filepaths, resize_max=1024)
247
+ scored_records = score_records(records, weights)
248
+ if not scored_records:
249
+ raise gr.Error("Could not read or score any of the uploaded images.")
250
+
251
+ best_ldr_record = scored_records[0]
252
+ best_ldr_path = best_ldr_record['path']
253
+ print(f"Best LDR selected: {os.path.basename(best_ldr_path)} (Score: {best_ldr_record['score']:.4f})")
254
+
255
+ # --- Step 2: Run Inference ---
256
+ print("Running Full Image (High-Res Scaled) Inference...")
257
+
258
+ # We only need the one set of options now
259
+ inference_options = {
260
+ 'preprocess': 'scale_width',
261
+ 'load_size': 1024, # Generate the high-resolution, full image
262
+ 'crop_size': 728 # This value is ignored but required by the parser
263
+ }
264
+
265
+ # Deep copy the base options to avoid modifying the global state
266
+ local_opt = copy.deepcopy(opt)
267
+ for key, value in inference_options.items():
268
+ setattr(local_opt, key, value)
269
+
270
+ # Run the model
271
+ with tempfile.TemporaryDirectory() as temp_dir:
272
+ shutil.copy(best_ldr_path, temp_dir)
273
+ local_opt.dataroot = temp_dir
274
+ local_opt.num_test = 1
275
+ dataset = create_dataset(local_opt)
276
+
277
+ for i, data in enumerate(dataset):
278
+ model.set_input(data)
279
+ model.test()
280
+ visuals = model.get_current_visuals()
281
+
282
+ for label, image_tensor in visuals.items():
283
+ if label == 'fake':
284
+ image_numpy = (np.transpose(image_tensor.cpu().float().numpy()[0], (1, 2, 0)) + 1) / 2.0 * 255.0
285
+ final_hdr_image = Image.fromarray(image_numpy.astype(np.uint8))
286
+ print("Conversion to HDR successful.")
287
+ # Return the gallery of inputs and the single final HDR image
288
+ return uploaded_filepaths, final_hdr_image
289
+
290
+ except Exception as e:
291
+ print(f"An error occurred: {e}")
292
+ raise gr.Error(f"An error occurred during processing: {e}")
293
+
294
+ # --- Create and Launch the Gradio Interface ---
295
+
296
+ with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo:
297
+ gr.Markdown(
298
+ """
299
+ # LDR Bracketing to HDR Converter
300
+ Upload a set of bracketed LDR images. The app will automatically select the best one and convert it to a vibrant, full-resolution HDR image.
301
+ """
302
+ )
303
+
304
+ with gr.Row():
305
+ with gr.Column(scale=1, min_width=350):
306
+ # --- INPUT ---
307
+ input_files = gr.Files(
308
+ label="Upload Bracketed LDR Images",
309
+ file_types=["image"]
310
+ )
311
+ process_button = gr.Button("Process Images", variant="primary")
312
+ with gr.Accordion("See Your Uploaded Images", open=True):
313
+ input_gallery = gr.Gallery(label="Uploaded Images", show_label=False, columns=[2, 3], height="auto")
314
+
315
+ with gr.Column(scale=2):
316
+ # --- OUTPUT ---
317
+ gr.Markdown("## Generated HDR Result")
318
+ output_image = gr.Image(label="Final HDR Image", type="pil", interactive=False, show_download_button=True)
319
+
320
+ process_button.click(
321
+ fn=process_images_to_hdr,
322
+ inputs=input_files,
323
+ outputs=[input_gallery, output_image]
324
+ )
325
+
326
+ # gr.Markdown("### Examples")
327
+ # gr.Examples(
328
+ # examples=[
329
+ # [
330
+ # "../pix2pix_dataset/testA/077A2406.jpg",
331
+ # "../pix2pix_dataset/testA/077A4049.jpg",
332
+ # "../pix2pix_dataset/testA/077A4073.jpg"
333
+ # ]
334
+ # ],
335
+ # inputs=input_files
336
+ # )
337
+
338
+ print("--- Launching Gradio App ---")
339
+ demo.launch(share=True)
best_ldr.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ make_cyclegan_dataset.py
4
+
5
+ Create paired datasets (setA, setB) for CycleGAN training from your dataset.
6
+
7
+ What it does:
8
+ - Walks the dataset root (e.g. ../jpeg_stage1Just0)
9
+ - Finds scene directories that contain both a `source/` subfolder with >= min_images
10
+ and an `output/` subfolder with at least one image.
11
+ - For each scene: selects the best LDR from `source/` (using metrics: clipped, coverage,
12
+ exposure centering, sharpness, noise), copies that chosen source image into outdir/setA/,
13
+ copies the scene's output image into outdir/setB/ but renames it to the chosen source filename.
14
+ - Writes CSV and JSON reports with metric breakdowns.
15
+
16
+ Usage:
17
+ python make_cyclegan_dataset.py --root ../jpeg_stage1Just0 --outdir ./cyclegan_data
18
+
19
+ Dependencies:
20
+ pip install opencv-python pillow numpy
21
+
22
+ Author: ChatGPT (opinionated: default weights favor low clipping and good coverage)
23
+ """
24
+
25
+ import argparse
26
+ import os
27
+ from pathlib import Path
28
+ import json
29
+ import csv
30
+ import shutil
31
+ from math import fabs
32
+
33
+ import numpy as np
34
+ import cv2
35
+ from PIL import Image, ExifTags
36
+
37
+ IMG_EXTS = {".jpg", ".jpeg", ".png", ".tif", ".tiff", ".bmp", ".webp"}
38
+
39
+ # ------------------ Image / metric helpers ------------------
40
+
41
+ def is_image_file(p: Path):
42
+ return p.suffix.lower() in IMG_EXTS and p.is_file()
43
+
44
+ def list_images(folder: Path):
45
+ if not folder.exists():
46
+ return []
47
+ return sorted([p for p in folder.iterdir() if is_image_file(p)])
48
+
49
+ def read_image_gray(path: Path, resize_max=None):
50
+ """Read color then convert to grayscale float32 [0,1]. Uses cv2.imdecode to handle weird filenames."""
51
+ arr = np.fromfile(str(path), dtype=np.uint8)
52
+ img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
53
+ if img is None:
54
+ raise IOError(f"Failed to read image {path}")
55
+ if resize_max:
56
+ h, w = img.shape[:2]
57
+ scale = resize_max / max(h, w) if max(h, w) > resize_max else 1.0
58
+ if scale != 1.0:
59
+ img = cv2.resize(img, (int(w*scale), int(h*scale)), interpolation=cv2.INTER_AREA)
60
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0
61
+ return gray
62
+
63
+ def clipped_ratio(gray):
64
+ total = gray.size
65
+ high = np.count_nonzero(gray >= 0.992)
66
+ low = np.count_nonzero(gray <= 0.008)
67
+ return float(high + low) / float(total)
68
+
69
+ def histogram_coverage(gray, bins=256, min_frac=0.001):
70
+ hist, _ = np.histogram((gray * 255).astype(np.uint8), bins=bins, range=(0,255))
71
+ threshold = max(1, int(min_frac * gray.size))
72
+ covered = np.count_nonzero(hist >= threshold)
73
+ return float(covered) / float(bins)
74
+
75
+ def exposure_distance(gray):
76
+ return float(abs(float(np.mean(gray)) - 0.5))
77
+
78
+ def sharpness_metric(gray):
79
+ lap = cv2.Laplacian((gray * 255).astype(np.uint8), cv2.CV_64F)
80
+ return float(np.var(lap))
81
+
82
+ def noise_estimate(gray):
83
+ blur = cv2.GaussianBlur(gray, (3,3), 0)
84
+ hf = gray - blur
85
+ return float(np.std(hf))
86
+
87
+ def minmax_normalize(vals, eps=1e-8):
88
+ arr = np.array(vals, dtype=np.float64)
89
+ mn = float(arr.min())
90
+ mx = float(arr.max())
91
+ if mx - mn < eps:
92
+ # all equal -> zeros
93
+ return np.zeros_like(arr)
94
+ return (arr - mn) / (mx - mn)
95
+
96
+ # ------------------ Selection & scene processing ------------------
97
+
98
+ def compute_metrics_for_images(image_paths, resize_max):
99
+ records = []
100
+ for p in image_paths:
101
+ try:
102
+ g = read_image_gray(p, resize_max=resize_max)
103
+ except Exception as e:
104
+ print(f" WARNING: cannot read {p}: {e}")
105
+ continue
106
+ rec = {
107
+ "path": str(p),
108
+ "name": p.name,
109
+ "clipped": clipped_ratio(g),
110
+ "coverage": histogram_coverage(g),
111
+ "exposure_dist": exposure_distance(g),
112
+ "sharpness": sharpness_metric(g),
113
+ "noise": noise_estimate(g)
114
+ }
115
+ records.append(rec)
116
+ return records
117
+
118
+ def score_records(records, weights):
119
+ if not records:
120
+ return []
121
+ clipped_vals = [r["clipped"] for r in records]
122
+ cov_vals = [r["coverage"] for r in records]
123
+ exp_vals = [r["exposure_dist"] for r in records]
124
+ sharp_vals = [r["sharpness"] for r in records]
125
+ noise_vals = [r["noise"] for r in records]
126
+
127
+ clipped_n = minmax_normalize(clipped_vals)
128
+ cov_n = minmax_normalize(cov_vals)
129
+ exp_n = minmax_normalize(exp_vals)
130
+ sharp_n = minmax_normalize(sharp_vals)
131
+ noise_n = minmax_normalize(noise_vals)
132
+
133
+ scored = []
134
+ for i, r in enumerate(records):
135
+ score = 0.0
136
+ score += weights["clipped"] * (1.0 - float(clipped_n[i])) # less clipping -> better
137
+ score += weights["coverage"] * float(cov_n[i]) # more coverage -> better
138
+ score += weights["exposure"] * (1.0 - float(exp_n[i])) # closer to mid gray -> better
139
+ score += weights["sharpness"] * float(sharp_n[i]) # sharper -> better
140
+ score += weights["noise"] * (1.0 - float(noise_n[i])) # less noise -> better
141
+
142
+ rec = dict(r)
143
+ rec.update({
144
+ "clipped_n": float(clipped_n[i]),
145
+ "coverage_n": float(cov_n[i]),
146
+ "exposure_n": float(exp_n[i]),
147
+ "sharpness_n": float(sharp_n[i]),
148
+ "noise_n": float(noise_n[i]),
149
+ "score": float(score)
150
+ })
151
+ scored.append(rec)
152
+ scored_sorted = sorted(scored, key=lambda x: x["score"], reverse=True)
153
+ return scored_sorted
154
+
155
+ def find_output_image(output_folder: Path):
156
+ imgs = list_images(output_folder)
157
+ if not imgs:
158
+ return None
159
+ # Prefer file with same name as parent folder (if present), else pick largest file
160
+ parent_name = output_folder.parent.name
161
+ for p in imgs:
162
+ if p.stem == parent_name:
163
+ return p
164
+ # otherwise pick largest by file size (likely the main image)
165
+ imgs_sorted = sorted(imgs, key=lambda x: x.stat().st_size, reverse=True)
166
+ return imgs_sorted[0]
167
+
168
+ # ------------------ Main procedure ------------------
169
+
170
+ def make_dataset(root: Path, outdir: Path, min_images: int,
171
+ resize_max: int, weights: dict, copy_method="copy"):
172
+ scenes_found = 0
173
+ results = []
174
+ setA = outdir / "setA"
175
+ setB = outdir / "setB"
176
+ os.makedirs(setA, exist_ok=True)
177
+ os.makedirs(setB, exist_ok=True)
178
+
179
+ # Walk the tree and find directories that contain both source/ and output/
180
+ for dirpath, dirnames, filenames in os.walk(root):
181
+ d = Path(dirpath)
182
+ src_dir = d / "source"
183
+ out_dir = d / "output"
184
+ if not src_dir.exists() or not out_dir.exists():
185
+ continue
186
+ src_imgs = list_images(src_dir)
187
+ if len(src_imgs) < min_images:
188
+ # skip small scenes
189
+ continue
190
+
191
+ scenes_found += 1
192
+ print(f"[{scenes_found}] Scene: {d} ({len(src_imgs)} source images)")
193
+
194
+ # compute metrics and choose best
195
+ records = compute_metrics_for_images(src_imgs, resize_max=resize_max)
196
+ if not records:
197
+ print(" No readable source images, skipping.")
198
+ continue
199
+ scored = score_records(records, weights)
200
+ chosen = scored[0]
201
+ chosen_path = Path(chosen["path"])
202
+ chosen_name = chosen_path.name # used for setA filename (and setB target name)
203
+
204
+ # find output image for this scene
205
+ out_img = find_output_image(out_dir)
206
+ if out_img is None:
207
+ print(f" WARNING: no output image found in {out_dir}; skipping copying pair.")
208
+ out_img_path = None
209
+ else:
210
+ out_img_path = out_img
211
+
212
+ # destination paths
213
+ destA = setA / chosen_name
214
+ destB = setB / chosen_name
215
+
216
+ # copy or symlink
217
+ try:
218
+ if copy_method == "symlink":
219
+ if destA.exists():
220
+ destA.unlink()
221
+ os.symlink(os.path.abspath(chosen_path), destA)
222
+ else:
223
+ shutil.copy2(chosen_path, destA)
224
+ except Exception as e:
225
+ print(f" ERROR copying source -> {destA}: {e}")
226
+
227
+ if out_img_path is not None:
228
+ try:
229
+ if copy_method == "symlink":
230
+ if destB.exists():
231
+ destB.unlink()
232
+ os.symlink(os.path.abspath(out_img_path), destB)
233
+ else:
234
+ shutil.copy2(out_img_path, destB)
235
+ except Exception as e:
236
+ print(f" ERROR copying output -> {destB}: {e}")
237
+
238
+ # record result
239
+ result = {
240
+ "scene_dir": str(d),
241
+ "source_dir": str(src_dir),
242
+ "output_dir": str(out_dir),
243
+ "chosen_source_path": str(chosen_path),
244
+ "chosen_source_name": chosen_name,
245
+ "chosen_score": chosen["score"],
246
+ "metrics": {
247
+ "clipped": chosen["clipped"],
248
+ "coverage": chosen["coverage"],
249
+ "exposure_dist": chosen["exposure_dist"],
250
+ "sharpness": chosen["sharpness"],
251
+ "noise": chosen["noise"],
252
+ "clipped_n": chosen["clipped_n"],
253
+ "coverage_n": chosen["coverage_n"],
254
+ "exposure_n": chosen["exposure_n"],
255
+ "sharpness_n": chosen["sharpness_n"],
256
+ "noise_n": chosen["noise_n"],
257
+ },
258
+ "output_image_used": str(out_img_path) if out_img_path is not None else None,
259
+ "destA": str(destA),
260
+ "destB": str(destB) if out_img_path is not None else None
261
+ }
262
+ results.append(result)
263
+
264
+ # print top 3 for quick audit
265
+ print(" Top candidates:")
266
+ for c in scored[:3]:
267
+ print(f" {c['score']:.4f} clipped={c['clipped']:.4f} cov={c['coverage']:.4f} expd={c['exposure_dist']:.4f} sharp={c['sharpness']:.1f} noise={c['noise']:.5f} -> {Path(c['path']).name}")
268
+
269
+ # write reports
270
+ out_csv = outdir / "paired_selection.csv"
271
+ out_json = outdir / "paired_selection.json"
272
+ with open(out_json, "w", encoding="utf-8") as jf:
273
+ json.dump(results, jf, indent=2)
274
+ with open(out_csv, "w", newline="", encoding="utf-8") as cf:
275
+ writer = csv.writer(cf)
276
+ header = ["scene_dir", "source_dir", "output_dir", "chosen_source_name", "chosen_source_path",
277
+ "chosen_score", "output_image_used", "destA", "destB"]
278
+ writer.writerow(header)
279
+ for r in results:
280
+ writer.writerow([r.get(h, "") for h in header])
281
+
282
+ print(f"\nDone. Scenes processed: {scenes_found}")
283
+ print(f"Paired data saved to:\n {setA}\n {setB}")
284
+ print(f"Reports: {out_csv} , {out_json}")
285
+ return results
286
+
287
+ # ------------------ CLI ------------------
288
+
289
+ def parse_weights(s):
290
+ parts = [float(x.strip()) for x in s.split(",")]
291
+ if len(parts) != 5:
292
+ raise argparse.ArgumentTypeError("weights must be 5 comma-separated numbers")
293
+ ssum = sum(parts)
294
+ if ssum == 0:
295
+ raise argparse.ArgumentTypeError("weights sum must be > 0")
296
+ return [p / ssum for p in parts]
297
+
298
+ def main():
299
+ ap = argparse.ArgumentParser(description="Make paired CycleGAN dataset from your LDR/HDR scene layout.")
300
+ ap.add_argument("--root", "-r", required=True, help="Root of dataset (e.g. ../jpeg_stage1Just0)")
301
+ ap.add_argument("--outdir", "-o", default="./cyclegan_data", help="Output folder for paired dataset")
302
+ ap.add_argument("--min_images", type=int, default=2, help="Minimum images in source/ to consider scene")
303
+ ap.add_argument("--resize_max", type=int, default=1024, help="Resize longest side for metric calc (speeds up)")
304
+ ap.add_argument("--weights", type=parse_weights, default="0.35,0.25,0.15,0.15,0.10",
305
+ help="5 weights: clipped,coverage,exposure,sharpness,noise (will be normalized)")
306
+ ap.add_argument("--copy_method", choices=["copy", "symlink"], default="copy",
307
+ help="copy files or create symlinks (symlink saves disk space)")
308
+ args = ap.parse_args()
309
+
310
+ root = Path(args.root).expanduser().resolve()
311
+ outdir = Path(args.outdir).expanduser().resolve()
312
+ w = args.weights if isinstance(args.weights, list) else args.weights # parse_weights returns list
313
+ weights = {
314
+ "clipped": w[0],
315
+ "coverage": w[1],
316
+ "exposure": w[2],
317
+ "sharpness": w[3],
318
+ "noise": w[4]
319
+ }
320
+ print("Using weights:", weights)
321
+ outdir.mkdir(parents=True, exist_ok=True)
322
+
323
+ make_dataset(root, outdir, min_images=args.min_images,
324
+ resize_max=args.resize_max, weights=weights, copy_method=args.copy_method)
325
+
326
+ if __name__ == "__main__":
327
+ main()
checkpoints/ldr2hdr_cyclegan_728/latest_net_G.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff234154d77ae11a15cb2550deec1cc63cf269be4bbec8487aea3ba2bc3c2b0f
3
+ size 45533133
data/__init__.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This package includes all the modules related to data loading and preprocessing
2
+
3
+ To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset.
4
+ You need to implement four functions:
5
+ -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
6
+ -- <__len__>: return the size of dataset.
7
+ -- <__getitem__>: get a data point from data loader.
8
+ -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options.
9
+
10
+ Now you can use the dataset class by specifying flag '--dataset_mode dummy'.
11
+ See our template dataset class 'template_dataset.py' for more details.
12
+ """
13
+
14
+ import importlib
15
+ import torch.utils.data
16
+ from torch.utils.data.distributed import DistributedSampler
17
+ import torch.distributed as dist
18
+ import os
19
+ from data.base_dataset import BaseDataset
20
+
21
+
22
+ def find_dataset_using_name(dataset_name):
23
+ """Import the module "data/[dataset_name]_dataset.py".
24
+
25
+ In the file, the class called DatasetNameDataset() will
26
+ be instantiated. It has to be a subclass of BaseDataset,
27
+ and it is case-insensitive.
28
+ """
29
+ dataset_filename = "data." + dataset_name + "_dataset"
30
+ datasetlib = importlib.import_module(dataset_filename)
31
+
32
+ dataset = None
33
+ target_dataset_name = dataset_name.replace("_", "") + "dataset"
34
+ for name, cls in datasetlib.__dict__.items():
35
+ if name.lower() == target_dataset_name.lower() and issubclass(cls, BaseDataset):
36
+ dataset = cls
37
+
38
+ if dataset is None:
39
+ raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name))
40
+
41
+ return dataset
42
+
43
+
44
+ def get_option_setter(dataset_name):
45
+ """Return the static method <modify_commandline_options> of the dataset class."""
46
+ dataset_class = find_dataset_using_name(dataset_name)
47
+ return dataset_class.modify_commandline_options
48
+
49
+
50
+ def create_dataset(opt):
51
+ """Create a dataset given the option.
52
+
53
+ This function wraps the class CustomDatasetDataLoader.
54
+ This is the main interface between this package and 'train.py'/'test.py'
55
+
56
+ Example:
57
+ >>> from data import create_dataset
58
+ >>> dataset = create_dataset(opt)
59
+ """
60
+ data_loader = CustomDatasetDataLoader(opt)
61
+ dataset = data_loader.load_data()
62
+ return dataset
63
+
64
+
65
+ class CustomDatasetDataLoader:
66
+ """Wrapper class of Dataset class that performs multi-threaded data loading"""
67
+
68
+ def __init__(self, opt):
69
+ """Initialize this class
70
+
71
+ Step 1: create a dataset instance given the name [dataset_mode]
72
+ Step 2: create a multi-threaded data loader.
73
+ """
74
+ self.opt = opt
75
+ dataset_class = find_dataset_using_name(opt.dataset_mode)
76
+ self.dataset = dataset_class(opt)
77
+ print("dataset [%s] was created" % type(self.dataset).__name__)
78
+
79
+ # Use DistributedSampler for DDP training
80
+ if "LOCAL_RANK" in os.environ:
81
+ print(f'create DDP sampler on rank {int(os.environ["LOCAL_RANK"])}')
82
+ self.sampler = DistributedSampler(self.dataset, shuffle=not opt.serial_batches)
83
+ shuffle = False # DistributedSampler handles shuffling
84
+ else:
85
+ self.sampler = None
86
+ shuffle = not opt.serial_batches
87
+
88
+ self.dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=opt.batch_size, shuffle=shuffle, sampler=self.sampler, num_workers=int(opt.num_threads))
89
+
90
+ def load_data(self):
91
+ return self
92
+
93
+ def __len__(self):
94
+ """Return the number of data in the dataset"""
95
+ return min(len(self.dataset), self.opt.max_dataset_size)
96
+
97
+ def __iter__(self):
98
+ """Return a batch of data"""
99
+ for i, data in enumerate(self.dataloader):
100
+ if i * self.opt.batch_size >= self.opt.max_dataset_size:
101
+ break
102
+ yield data
103
+
104
+ def set_epoch(self, epoch):
105
+ """Set epoch for DistributedSampler to ensure proper shuffling"""
106
+ if self.sampler is not None:
107
+ self.sampler.set_epoch(epoch)
data/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (6.17 kB). View file
 
data/__pycache__/aligned_dataset.cpython-312.pyc ADDED
Binary file (3.89 kB). View file
 
data/__pycache__/base_dataset.cpython-312.pyc ADDED
Binary file (9.56 kB). View file
 
data/__pycache__/image_folder.cpython-312.pyc ADDED
Binary file (3.51 kB). View file
 
data/__pycache__/single_dataset.cpython-312.pyc ADDED
Binary file (2.57 kB). View file
 
data/__pycache__/unaligned_dataset.cpython-312.pyc ADDED
Binary file (4.59 kB). View file
 
data/aligned_dataset.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.base_dataset import BaseDataset, get_params, get_transform
3
+ from data.image_folder import make_dataset
4
+ from PIL import Image
5
+
6
+
7
+ class AlignedDataset(BaseDataset):
8
+ """A dataset class for paired image dataset.
9
+
10
+ It assumes that the directory '/path/to/data/train' contains image pairs in the form of {A,B}.
11
+ During test time, you need to prepare a directory '/path/to/data/test'.
12
+ """
13
+
14
+ def __init__(self, opt):
15
+ """Initialize this dataset class.
16
+
17
+ Parameters:
18
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
19
+ """
20
+ BaseDataset.__init__(self, opt)
21
+ self.dir_AB = os.path.join(opt.dataroot, opt.phase) # get the image directory
22
+ self.AB_paths = sorted(make_dataset(self.dir_AB, opt.max_dataset_size)) # get image paths
23
+ assert self.opt.load_size >= self.opt.crop_size # crop_size should be smaller than the size of loaded image
24
+ self.input_nc = self.opt.output_nc if self.opt.direction == "BtoA" else self.opt.input_nc
25
+ self.output_nc = self.opt.input_nc if self.opt.direction == "BtoA" else self.opt.output_nc
26
+
27
+ def __getitem__(self, index):
28
+ """Return a data point and its metadata information.
29
+
30
+ Parameters:
31
+ index - - a random integer for data indexing
32
+
33
+ Returns a dictionary that contains A, B, A_paths and B_paths
34
+ A (tensor) - - an image in the input domain
35
+ B (tensor) - - its corresponding image in the target domain
36
+ A_paths (str) - - image paths
37
+ B_paths (str) - - image paths (same as A_paths)
38
+ """
39
+ # read a image given a random integer index
40
+ AB_path = self.AB_paths[index]
41
+ AB = Image.open(AB_path).convert("RGB")
42
+ # split AB image into A and B
43
+ w, h = AB.size
44
+ w2 = int(w / 2)
45
+ A = AB.crop((0, 0, w2, h))
46
+ B = AB.crop((w2, 0, w, h))
47
+
48
+ # apply the same transform to both A and B
49
+ transform_params = get_params(self.opt, A.size)
50
+ A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1))
51
+ B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1))
52
+
53
+ A = A_transform(A)
54
+ B = B_transform(B)
55
+
56
+ return {"A": A, "B": B, "A_paths": AB_path, "B_paths": AB_path}
57
+
58
+ def __len__(self):
59
+ """Return the total number of images in the dataset."""
60
+ return len(self.AB_paths)
data/base_dataset.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This module implements an abstract base class (ABC) 'BaseDataset' for datasets.
2
+
3
+ It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses.
4
+ """
5
+
6
+ import random
7
+ import numpy as np
8
+ import torch.utils.data as data
9
+ from PIL import Image
10
+ import torchvision.transforms as transforms
11
+ from abc import ABC, abstractmethod
12
+
13
+
14
+ class BaseDataset(data.Dataset, ABC):
15
+ """This class is an abstract base class (ABC) for datasets.
16
+
17
+ To create a subclass, you need to implement the following four functions:
18
+ -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
19
+ -- <__len__>: return the size of dataset.
20
+ -- <__getitem__>: get a data point.
21
+ -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options.
22
+ """
23
+
24
+ def __init__(self, opt):
25
+ """Initialize the class; save the options in the class
26
+
27
+ Parameters:
28
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
29
+ """
30
+ self.opt = opt
31
+ self.root = opt.dataroot
32
+
33
+ @staticmethod
34
+ def modify_commandline_options(parser, is_train):
35
+ """Add new dataset-specific options, and rewrite default values for existing options.
36
+
37
+ Parameters:
38
+ parser -- original option parser
39
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
40
+
41
+ Returns:
42
+ the modified parser.
43
+ """
44
+ return parser
45
+
46
+ @abstractmethod
47
+ def __len__(self):
48
+ """Return the total number of images in the dataset."""
49
+ return 0
50
+
51
+ @abstractmethod
52
+ def __getitem__(self, index):
53
+ """Return a data point and its metadata information.
54
+
55
+ Parameters:
56
+ index - - a random integer for data indexing
57
+
58
+ Returns:
59
+ a dictionary of data with their names. It ususally contains the data itself and its metadata information.
60
+ """
61
+ pass
62
+
63
+
64
+ def get_params(opt, size):
65
+ w, h = size
66
+ new_h = h
67
+ new_w = w
68
+ if opt.preprocess == "resize_and_crop":
69
+ new_h = new_w = opt.load_size
70
+ elif opt.preprocess == "scale_width_and_crop":
71
+ new_w = opt.load_size
72
+ new_h = opt.load_size * h // w
73
+
74
+ x = random.randint(0, np.maximum(0, new_w - opt.crop_size))
75
+ y = random.randint(0, np.maximum(0, new_h - opt.crop_size))
76
+
77
+ flip = random.random() > 0.5
78
+
79
+ return {"crop_pos": (x, y), "flip": flip}
80
+
81
+
82
+ def get_transform(opt, params=None, grayscale=False, method=transforms.InterpolationMode.BICUBIC, convert=True):
83
+ transform_list = []
84
+ if grayscale:
85
+ transform_list.append(transforms.Grayscale(1))
86
+ if "resize" in opt.preprocess:
87
+ osize = [opt.load_size, opt.load_size]
88
+ transform_list.append(transforms.Resize(osize, method))
89
+ elif "scale_width" in opt.preprocess:
90
+ transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, opt.crop_size, method)))
91
+
92
+ if "crop" in opt.preprocess:
93
+ if params is None:
94
+ transform_list.append(transforms.RandomCrop(opt.crop_size))
95
+ else:
96
+ transform_list.append(transforms.Lambda(lambda img: __crop(img, params["crop_pos"], opt.crop_size)))
97
+
98
+ if opt.preprocess == "none":
99
+ transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method)))
100
+
101
+ if not opt.no_flip:
102
+ if params is None:
103
+ transform_list.append(transforms.RandomHorizontalFlip())
104
+ elif params["flip"]:
105
+ transform_list.append(transforms.Lambda(lambda img: __flip(img, params["flip"])))
106
+
107
+ if convert:
108
+ transform_list += [transforms.ToTensor()]
109
+ if grayscale:
110
+ transform_list += [transforms.Normalize((0.5,), (0.5,))]
111
+ else:
112
+ transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
113
+ return transforms.Compose(transform_list)
114
+
115
+
116
+ def __transforms2pil_resize(method):
117
+ mapper = {
118
+ transforms.InterpolationMode.BILINEAR: Image.BILINEAR,
119
+ transforms.InterpolationMode.BICUBIC: Image.BICUBIC,
120
+ transforms.InterpolationMode.NEAREST: Image.NEAREST,
121
+ transforms.InterpolationMode.LANCZOS: Image.LANCZOS,
122
+ }
123
+ return mapper[method]
124
+
125
+
126
+ def __make_power_2(img, base, method=transforms.InterpolationMode.BICUBIC):
127
+ method = __transforms2pil_resize(method)
128
+ ow, oh = img.size
129
+ h = int(round(oh / base) * base)
130
+ w = int(round(ow / base) * base)
131
+ if h == oh and w == ow:
132
+ return img
133
+
134
+ __print_size_warning(ow, oh, w, h)
135
+ return img.resize((w, h), method)
136
+
137
+
138
+ def __scale_width(img, target_size, crop_size, method=transforms.InterpolationMode.BICUBIC):
139
+ method = __transforms2pil_resize(method)
140
+ ow, oh = img.size
141
+ if ow == target_size and oh >= crop_size:
142
+ return img
143
+ w = target_size
144
+ h = int(max(target_size * oh / ow, crop_size))
145
+ return img.resize((w, h), method)
146
+
147
+
148
+ def __crop(img, pos, size):
149
+ ow, oh = img.size
150
+ x1, y1 = pos
151
+ tw = th = size
152
+ if ow > tw or oh > th:
153
+ return img.crop((x1, y1, x1 + tw, y1 + th))
154
+ return img
155
+
156
+
157
+ def __flip(img, flip):
158
+ if flip:
159
+ return img.transpose(Image.FLIP_LEFT_RIGHT)
160
+ return img
161
+
162
+
163
+ def __print_size_warning(ow, oh, w, h):
164
+ """Print warning information about image size(only print once)"""
165
+ if not hasattr(__print_size_warning, "has_printed"):
166
+ print("The image size needs to be a multiple of 4. " "The loaded image size was (%d, %d), so it was adjusted to " "(%d, %d). This adjustment will be done to all images " "whose sizes are not multiples of 4" % (ow, oh, w, h))
167
+ __print_size_warning.has_printed = True
data/colorization_dataset.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.base_dataset import BaseDataset, get_transform
3
+ from data.image_folder import make_dataset
4
+ from skimage import color # require skimage
5
+ from PIL import Image
6
+ import numpy as np
7
+ import torchvision.transforms as transforms
8
+
9
+
10
+ class ColorizationDataset(BaseDataset):
11
+ """This dataset class can load a set of natural images in RGB, and convert RGB format into (L, ab) pairs in Lab color space.
12
+
13
+ This dataset is required by pix2pix-based colorization model ('--model colorization')
14
+ """
15
+
16
+ @staticmethod
17
+ def modify_commandline_options(parser, is_train):
18
+ """Add new dataset-specific options, and rewrite default values for existing options.
19
+
20
+ Parameters:
21
+ parser -- original option parser
22
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
23
+
24
+ Returns:
25
+ the modified parser.
26
+
27
+ By default, the number of channels for input image is 1 (L) and
28
+ the number of channels for output image is 2 (ab). The direction is from A to B
29
+ """
30
+ parser.set_defaults(input_nc=1, output_nc=2, direction="AtoB")
31
+ return parser
32
+
33
+ def __init__(self, opt):
34
+ """Initialize this dataset class.
35
+
36
+ Parameters:
37
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
38
+ """
39
+ BaseDataset.__init__(self, opt)
40
+ self.dir = os.path.join(opt.dataroot, opt.phase)
41
+ self.AB_paths = sorted(make_dataset(self.dir, opt.max_dataset_size))
42
+ assert opt.input_nc == 1 and opt.output_nc == 2 and opt.direction == "AtoB"
43
+ self.transform = get_transform(self.opt, convert=False)
44
+
45
+ def __getitem__(self, index):
46
+ """Return a data point and its metadata information.
47
+
48
+ Parameters:
49
+ index - - a random integer for data indexing
50
+
51
+ Returns a dictionary that contains A, B, A_paths and B_paths
52
+ A (tensor) - - the L channel of an image
53
+ B (tensor) - - the ab channels of the same image
54
+ A_paths (str) - - image paths
55
+ B_paths (str) - - image paths (same as A_paths)
56
+ """
57
+ path = self.AB_paths[index]
58
+ im = Image.open(path).convert("RGB")
59
+ im = self.transform(im)
60
+ im = np.array(im)
61
+ lab = color.rgb2lab(im).astype(np.float32)
62
+ lab_t = transforms.ToTensor()(lab)
63
+ A = lab_t[[0], ...] / 50.0 - 1.0
64
+ B = lab_t[[1, 2], ...] / 110.0
65
+ return {"A": A, "B": B, "A_paths": path, "B_paths": path}
66
+
67
+ def __len__(self):
68
+ """Return the total number of images in the dataset."""
69
+ return len(self.AB_paths)
data/image_folder.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A modified image folder class
2
+
3
+ We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py)
4
+ so that this class can load images from both current directory and its subdirectories.
5
+ """
6
+
7
+ import torch.utils.data as data
8
+ from pathlib import Path
9
+ from PIL import Image
10
+
11
+ IMG_EXTENSIONS = [
12
+ ".jpg",
13
+ ".JPG",
14
+ ".jpeg",
15
+ ".JPEG",
16
+ ".png",
17
+ ".PNG",
18
+ ".ppm",
19
+ ".PPM",
20
+ ".bmp",
21
+ ".BMP",
22
+ ".tif",
23
+ ".TIF",
24
+ ".tiff",
25
+ ".TIFF",
26
+ ]
27
+
28
+
29
+ def is_image_file(filename):
30
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
31
+
32
+
33
+ def make_dataset(dir, max_dataset_size=float("inf")):
34
+ images = []
35
+ dir_path = Path(dir)
36
+ assert dir_path.is_dir(), f"{dir} is not a valid directory"
37
+
38
+ for path in sorted(dir_path.rglob("*")):
39
+ if path.is_file() and is_image_file(path.name):
40
+ images.append(str(path))
41
+ return images[: min(max_dataset_size, len(images))]
42
+
43
+
44
+ def default_loader(path):
45
+ return Image.open(path).convert("RGB")
46
+
47
+
48
+ class ImageFolder(data.Dataset):
49
+
50
+ def __init__(self, root, transform=None, return_paths=False, loader=default_loader):
51
+ imgs = make_dataset(root)
52
+ if len(imgs) == 0:
53
+ raise (RuntimeError("Found 0 images in: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
54
+
55
+ self.root = root
56
+ self.imgs = imgs
57
+ self.transform = transform
58
+ self.return_paths = return_paths
59
+ self.loader = loader
60
+
61
+ def __getitem__(self, index):
62
+ path = self.imgs[index]
63
+ img = self.loader(path)
64
+ if self.transform is not None:
65
+ img = self.transform(img)
66
+ if self.return_paths:
67
+ return img, path
68
+ else:
69
+ return img
70
+
71
+ def __len__(self):
72
+ return len(self.imgs)
data/single_dataset.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data.base_dataset import BaseDataset, get_transform
2
+ from data.image_folder import make_dataset
3
+ from PIL import Image
4
+
5
+
6
+ class SingleDataset(BaseDataset):
7
+ """This dataset class can load a set of images specified by the path --dataroot /path/to/data.
8
+
9
+ It can be used for generating CycleGAN results only for one side with the model option '-model test'.
10
+ """
11
+
12
+ def __init__(self, opt):
13
+ """Initialize this dataset class.
14
+
15
+ Parameters:
16
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
17
+ """
18
+ BaseDataset.__init__(self, opt)
19
+ self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size))
20
+ input_nc = self.opt.output_nc if self.opt.direction == "BtoA" else self.opt.input_nc
21
+ self.transform = get_transform(opt, grayscale=(input_nc == 1))
22
+
23
+ def __getitem__(self, index):
24
+ """Return a data point and its metadata information.
25
+
26
+ Parameters:
27
+ index - - a random integer for data indexing
28
+
29
+ Returns a dictionary that contains A and A_paths
30
+ A(tensor) - - an image in one domain
31
+ A_paths(str) - - the path of the image
32
+ """
33
+ A_path = self.A_paths[index]
34
+ A_img = Image.open(A_path).convert("RGB")
35
+ A = self.transform(A_img)
36
+ return {"A": A, "A_paths": A_path}
37
+
38
+ def __len__(self):
39
+ """Return the total number of images in the dataset."""
40
+ return len(self.A_paths)
data/template_dataset.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Dataset class template
2
+
3
+ This module provides a template for users to implement custom datasets.
4
+ You can specify '--dataset_mode template' to use this dataset.
5
+ The class name should be consistent with both the filename and its dataset_mode option.
6
+ The filename should be <dataset_mode>_dataset.py
7
+ The class name should be <Dataset_mode>Dataset.py
8
+ You need to implement the following functions:
9
+ -- <modify_commandline_options>: Add dataset-specific options and rewrite default values for existing options.
10
+ -- <__init__>: Initialize this dataset class.
11
+ -- <__getitem__>: Return a data point and its metadata information.
12
+ -- <__len__>: Return the number of images.
13
+ """
14
+
15
+ from data.base_dataset import BaseDataset, get_transform
16
+
17
+ # from data.image_folder import make_dataset
18
+ # from PIL import Image
19
+
20
+
21
+ class TemplateDataset(BaseDataset):
22
+ """A template dataset class for you to implement custom datasets."""
23
+
24
+ @staticmethod
25
+ def modify_commandline_options(parser, is_train):
26
+ """Add new dataset-specific options, and rewrite default values for existing options.
27
+
28
+ Parameters:
29
+ parser -- original option parser
30
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
31
+
32
+ Returns:
33
+ the modified parser.
34
+ """
35
+ parser.add_argument("--new_dataset_option", type=float, default=1.0, help="new dataset option")
36
+ parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values
37
+ return parser
38
+
39
+ def __init__(self, opt):
40
+ """Initialize this dataset class.
41
+
42
+ Parameters:
43
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
44
+
45
+ A few things can be done here.
46
+ - save the options (have been done in BaseDataset)
47
+ - get image paths and meta information of the dataset.
48
+ - define the image transformation.
49
+ """
50
+ # save the option and dataset root
51
+ BaseDataset.__init__(self, opt)
52
+ # get the image paths of your dataset;
53
+ self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root
54
+ # define the default transform function. You can use <base_dataset.get_transform>; You can also define your custom transform function
55
+ self.transform = get_transform(opt)
56
+
57
+ def __getitem__(self, index):
58
+ """Return a data point and its metadata information.
59
+
60
+ Parameters:
61
+ index -- a random integer for data indexing
62
+
63
+ Returns:
64
+ a dictionary of data with their names. It usually contains the data itself and its metadata information.
65
+
66
+ Step 1: get a random image path: e.g., path = self.image_paths[index]
67
+ Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB').
68
+ Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image)
69
+ Step 4: return a data point as a dictionary.
70
+ """
71
+ path = "temp" # needs to be a string
72
+ data_A = None # needs to be a tensor
73
+ data_B = None # needs to be a tensor
74
+ return {"data_A": data_A, "data_B": data_B, "path": path}
75
+
76
+ def __len__(self):
77
+ """Return the total number of images."""
78
+ return len(self.image_paths)
data/unaligned_dataset.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.base_dataset import BaseDataset, get_transform
3
+ from data.image_folder import make_dataset
4
+ from PIL import Image
5
+ import random
6
+
7
+
8
+ class UnalignedDataset(BaseDataset):
9
+ """
10
+ This dataset class can load unaligned/unpaired datasets.
11
+
12
+ It requires two directories to host training images from domain A '/path/to/data/trainA'
13
+ and from domain B '/path/to/data/trainB' respectively.
14
+ You can train the model with the dataset flag '--dataroot /path/to/data'.
15
+ Similarly, you need to prepare two directories:
16
+ '/path/to/data/testA' and '/path/to/data/testB' during test time.
17
+ """
18
+
19
+ def __init__(self, opt):
20
+ """Initialize this dataset class.
21
+
22
+ Parameters:
23
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
24
+ """
25
+ BaseDataset.__init__(self, opt)
26
+ self.dir_A = os.path.join(opt.dataroot, opt.phase + "A") # create a path '/path/to/data/trainA'
27
+ self.dir_B = os.path.join(opt.dataroot, opt.phase + "B") # create a path '/path/to/data/trainB'
28
+
29
+ self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA'
30
+ self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB'
31
+ self.A_size = len(self.A_paths) # get the size of dataset A
32
+ self.B_size = len(self.B_paths) # get the size of dataset B
33
+ btoA = self.opt.direction == "BtoA"
34
+ input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image
35
+ output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image
36
+ self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1))
37
+ self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1))
38
+
39
+ def __getitem__(self, index):
40
+ """Return a data point and its metadata information.
41
+
42
+ Parameters:
43
+ index (int) -- a random integer for data indexing
44
+
45
+ Returns a dictionary that contains A, B, A_paths and B_paths
46
+ A (tensor) -- an image in the input domain
47
+ B (tensor) -- its corresponding image in the target domain
48
+ A_paths (str) -- image paths
49
+ B_paths (str) -- image paths
50
+ """
51
+ A_path = self.A_paths[index % self.A_size] # make sure index is within then range
52
+ if self.opt.serial_batches: # make sure index is within then range
53
+ index_B = index % self.B_size
54
+ else: # randomize the index for domain B to avoid fixed pairs.
55
+ index_B = random.randint(0, self.B_size - 1)
56
+ B_path = self.B_paths[index_B]
57
+ A_img = Image.open(A_path).convert("RGB")
58
+ B_img = Image.open(B_path).convert("RGB")
59
+ # apply image transformation
60
+ A = self.transform_A(A_img)
61
+ B = self.transform_B(B_img)
62
+
63
+ return {"A": A, "B": B, "A_paths": A_path, "B_paths": B_path}
64
+
65
+ def __len__(self):
66
+ """Return the total number of images in the dataset.
67
+
68
+ As we have two datasets with potentially different number of images,
69
+ we take a maximum of
70
+ """
71
+ return max(self.A_size, self.B_size)
models/__init__.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This package contains modules related to objective functions, optimizations, and network architectures.
2
+
3
+ To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
4
+ You need to implement the following five functions:
5
+ -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
6
+ -- <set_input>: unpack data from dataset and apply preprocessing.
7
+ -- <forward>: produce intermediate results.
8
+ -- <optimize_parameters>: calculate loss, gradients, and update network weights.
9
+ -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
10
+
11
+ In the function <__init__>, you need to define four lists:
12
+ -- self.loss_names (str list): specify the training losses that you want to plot and save.
13
+ -- self.model_names (str list): define networks used in our training.
14
+ -- self.visual_names (str list): specify the images that you want to display and save.
15
+ -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
16
+
17
+ Now you can use the model class by specifying flag '--model dummy'.
18
+ See our template model class 'template_model.py' for more details.
19
+ """
20
+
21
+ import importlib
22
+ from models.base_model import BaseModel
23
+
24
+
25
+ def find_model_using_name(model_name: str):
26
+ """Import the module "models/[model_name]_model.py".
27
+
28
+ In the file, the class called DatasetNameModel() will
29
+ be instantiated. It has to be a subclass of BaseModel,
30
+ and it is case-insensitive.
31
+ """
32
+ model_filename = "models." + model_name + "_model"
33
+ modellib = importlib.import_module(model_filename)
34
+ model = None
35
+ target_model_name = model_name.replace("_", "") + "model"
36
+ for name, cls in modellib.__dict__.items():
37
+ if name.lower() == target_model_name.lower() and issubclass(cls, BaseModel):
38
+ model = cls
39
+
40
+ if model is None:
41
+ print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
42
+ exit(0)
43
+
44
+ return model
45
+
46
+
47
+ def get_option_setter(model_name: str):
48
+ """Return the static method <modify_commandline_options> of the model class."""
49
+ model_class = find_model_using_name(model_name)
50
+ return model_class.modify_commandline_options
51
+
52
+
53
+ def create_model(opt):
54
+ """Create a model given the option."""
55
+ model = find_model_using_name(opt.model)
56
+ instance = model(opt)
57
+ print(f"model [{type(instance).__name__}] was created")
58
+ return instance
models/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (3.65 kB). View file
 
models/__pycache__/base_model.cpython-312.pyc ADDED
Binary file (16.9 kB). View file
 
models/__pycache__/cycle_gan_model.cpython-312.pyc ADDED
Binary file (13.2 kB). View file
 
models/__pycache__/networks.cpython-312.pyc ADDED
Binary file (32.6 kB). View file
 
models/__pycache__/pix2pix_model.cpython-312.pyc ADDED
Binary file (8.45 kB). View file
 
models/__pycache__/test_model.cpython-312.pyc ADDED
Binary file (3.99 kB). View file
 
models/base_model.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import torch.distributed as dist
4
+ from pathlib import Path
5
+ from collections import OrderedDict
6
+ from abc import ABC, abstractmethod
7
+ from . import networks
8
+
9
+
10
+ class BaseModel(ABC):
11
+ """This class is an abstract base class (ABC) for models.
12
+ To create a subclass, you need to implement the following five functions:
13
+ -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
14
+ -- <set_input>: unpack data from dataset and apply preprocessing.
15
+ -- <forward>: produce intermediate results.
16
+ -- <optimize_parameters>: calculate losses, gradients, and update network weights.
17
+ -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
18
+ """
19
+
20
+ def __init__(self, opt):
21
+ """Initialize the BaseModel class.
22
+
23
+ Parameters:
24
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
25
+
26
+ When creating your custom class, you need to implement your own initialization.
27
+ In this function, you should first call <BaseModel.__init__(self, opt)>
28
+ Then, you need to define four lists:
29
+ -- self.loss_names (str list): specify the training losses that you want to plot and save.
30
+ -- self.model_names (str list): define networks used in our training.
31
+ -- self.visual_names (str list): specify the images that you want to display and save.
32
+ -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
33
+ """
34
+ self.opt = opt
35
+ self.isTrain = opt.isTrain
36
+ self.save_dir = Path(opt.checkpoints_dir) / opt.name # save all the checkpoints to save_dir
37
+ self.device = opt.device
38
+ # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark.
39
+ if opt.preprocess != "scale_width":
40
+ torch.backends.cudnn.benchmark = True
41
+ self.loss_names = []
42
+ self.model_names = []
43
+ self.visual_names = []
44
+ self.optimizers = []
45
+ self.image_paths = []
46
+ self.metric = 0 # used for learning rate policy 'plateau'
47
+
48
+ @staticmethod
49
+ def modify_commandline_options(parser, is_train):
50
+ """Add new model-specific options, and rewrite default values for existing options.
51
+
52
+ Parameters:
53
+ parser -- original option parser
54
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
55
+
56
+ Returns:
57
+ the modified parser.
58
+ """
59
+ return parser
60
+
61
+ @abstractmethod
62
+ def set_input(self, input):
63
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
64
+
65
+ Parameters:
66
+ input (dict): includes the data itself and its metadata information.
67
+ """
68
+ pass
69
+
70
+ @abstractmethod
71
+ def forward(self):
72
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
73
+ pass
74
+
75
+ @abstractmethod
76
+ def optimize_parameters(self):
77
+ """Calculate losses, gradients, and update network weights; called in every training iteration"""
78
+ pass
79
+
80
+ def setup(self, opt):
81
+ """Load and print networks; create schedulers
82
+
83
+ Parameters:
84
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
85
+ """
86
+ # Initialize all networks and load if needed
87
+ for name in self.model_names:
88
+ if isinstance(name, str):
89
+ net = getattr(self, "net" + name)
90
+ net = networks.init_net(net, opt.init_type, opt.init_gain)
91
+
92
+ # Load networks if needed
93
+ if not self.isTrain or opt.continue_train:
94
+ load_suffix = f"iter_{opt.load_iter}" if opt.load_iter > 0 else opt.epoch
95
+ load_filename = f"{load_suffix}_net_{name}.pth"
96
+ load_path = self.save_dir / load_filename
97
+
98
+ if isinstance(net, torch.nn.parallel.DistributedDataParallel):
99
+ net = net.module
100
+ print(f"loading the model from {load_path}")
101
+
102
+ state_dict = torch.load(load_path, map_location=str(self.device), weights_only=True)
103
+
104
+ if hasattr(state_dict, "_metadata"):
105
+ del state_dict._metadata
106
+
107
+ # patch InstanceNorm checkpoints
108
+ for key in list(state_dict.keys()):
109
+ self.__patch_instance_norm_state_dict(state_dict, net, key.split("."))
110
+ net.load_state_dict(state_dict)
111
+
112
+ # Move network to device
113
+ net.to(self.device)
114
+
115
+ # Wrap networks with DDP after loading
116
+ if dist.is_initialized():
117
+ # Check if using syncbatch normalization for DDP
118
+ if self.opt.norm == "syncbatch":
119
+ raise ValueError(f"For distributed training, opt.norm must be 'syncbatch' or 'inst', but got '{self.opt.norm}'. " "Please set --norm syncbatch for multi-GPU training.")
120
+
121
+ net = torch.nn.parallel.DistributedDataParallel(net, device_ids=[self.device.index])
122
+ # Sync all processes after DDP wrapping
123
+ dist.barrier()
124
+
125
+ setattr(self, "net" + name, net)
126
+
127
+ self.print_networks(opt.verbose)
128
+
129
+ if self.isTrain:
130
+ self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
131
+
132
+ def eval(self):
133
+ """Make models eval mode during test time"""
134
+ for name in self.model_names:
135
+ if isinstance(name, str):
136
+ net = getattr(self, "net" + name)
137
+ net.eval()
138
+
139
+ def test(self):
140
+ """Forward function used in test time.
141
+
142
+ This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
143
+ It also calls <compute_visuals> to produce additional visualization results
144
+ """
145
+ with torch.no_grad():
146
+ self.forward()
147
+ self.compute_visuals()
148
+
149
+ def compute_visuals(self):
150
+ """Calculate additional output images for visdom and HTML visualization"""
151
+ pass
152
+
153
+ def get_image_paths(self):
154
+ """Return image paths that are used to load current data"""
155
+ return self.image_paths
156
+
157
+ def update_learning_rate(self):
158
+ """Update learning rates for all the networks; called at the end of every epoch"""
159
+ old_lr = self.optimizers[0].param_groups[0]["lr"]
160
+ for scheduler in self.schedulers:
161
+ if self.opt.lr_policy == "plateau":
162
+ scheduler.step(self.metric)
163
+ else:
164
+ scheduler.step()
165
+
166
+ lr = self.optimizers[0].param_groups[0]["lr"]
167
+ print(f"learning rate {old_lr:.7f} -> {lr:.7f}")
168
+
169
+ def get_current_visuals(self):
170
+ """Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
171
+ visual_ret = OrderedDict()
172
+ for name in self.visual_names:
173
+ if isinstance(name, str):
174
+ visual_ret[name] = getattr(self, name)
175
+ return visual_ret
176
+
177
+ def get_current_losses(self):
178
+ """Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
179
+ errors_ret = OrderedDict()
180
+ for name in self.loss_names:
181
+ if isinstance(name, str):
182
+ errors_ret[name] = float(getattr(self, "loss_" + name)) # float(...) works for both scalar tensor and float number
183
+ return errors_ret
184
+
185
+ def save_networks(self, epoch):
186
+ """Save all the networks to the disk, unwrapping them first."""
187
+
188
+ # Only allow the main process (rank 0) to save the checkpoint
189
+ if not dist.is_initialized() or dist.get_rank() == 0:
190
+ for name in self.model_names:
191
+ if isinstance(name, str):
192
+ save_filename = f"{epoch}_net_{name}.pth"
193
+ save_path = self.save_dir / save_filename
194
+ net = getattr(self, "net" + name)
195
+
196
+ # 1. First, unwrap from DDP if it exists
197
+ if hasattr(net, "module"):
198
+ model_to_save = net.module
199
+ else:
200
+ model_to_save = net
201
+
202
+ # 2. Second, unwrap from torch.compile if it exists
203
+ if hasattr(model_to_save, "_orig_mod"):
204
+ model_to_save = model_to_save._orig_mod
205
+
206
+ # 3. Save the final, clean state_dict
207
+ torch.save(model_to_save.state_dict(), save_path)
208
+
209
+ def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
210
+ """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
211
+ key = keys[i]
212
+ if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
213
+ if module.__class__.__name__.startswith("InstanceNorm") and (key == "running_mean" or key == "running_var"):
214
+ if getattr(module, key) is None:
215
+ state_dict.pop(".".join(keys))
216
+ if module.__class__.__name__.startswith("InstanceNorm") and (key == "num_batches_tracked"):
217
+ state_dict.pop(".".join(keys))
218
+ else:
219
+ self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
220
+
221
+ def load_networks(self, epoch):
222
+ """Load all networks from the disk for DDP."""
223
+
224
+ for name in self.model_names:
225
+ if isinstance(name, str):
226
+ load_filename = f"{epoch}_net_{name}.pth"
227
+ load_path = self.save_dir / load_filename
228
+ net = getattr(self, "net" + name)
229
+
230
+ if isinstance(net, torch.nn.parallel.DistributedDataParallel):
231
+ net = net.module
232
+ print(f"loading the model from {load_path}")
233
+
234
+ state_dict = torch.load(load_path, map_location=str(self.device), weights_only=True)
235
+
236
+ if hasattr(state_dict, "_metadata"):
237
+ del state_dict._metadata
238
+
239
+ # patch InstanceNorm checkpoints
240
+ for key in list(state_dict.keys()):
241
+ self.__patch_instance_norm_state_dict(state_dict, net, key.split("."))
242
+ net.load_state_dict(state_dict)
243
+
244
+ # Add a barrier to sync all processes before continuing
245
+ if dist.is_initialized():
246
+ dist.barrier()
247
+
248
+ def print_networks(self, verbose):
249
+ """Print the total number of parameters in the network and (if verbose) network architecture
250
+
251
+ Parameters:
252
+ verbose (bool) -- if verbose: print the network architecture
253
+ """
254
+ print("---------- Networks initialized -------------")
255
+ for name in self.model_names:
256
+ if isinstance(name, str):
257
+ net = getattr(self, "net" + name)
258
+ num_params = 0
259
+ for param in net.parameters():
260
+ num_params += param.numel()
261
+ if verbose:
262
+ print(net)
263
+ print(f"[Network {name}] Total number of parameters : {num_params / 1e6:.3f} M")
264
+ print("-----------------------------------------------")
265
+
266
+ def set_requires_grad(self, nets, requires_grad=False):
267
+ """Set requies_grad=Fasle for all the networks to avoid unnecessary computations
268
+ Parameters:
269
+ nets (network list) -- a list of networks
270
+ requires_grad (bool) -- whether the networks require gradients or not
271
+ """
272
+ if not isinstance(nets, list):
273
+ nets = [nets]
274
+ for net in nets:
275
+ if net is not None:
276
+ for param in net.parameters():
277
+ param.requires_grad = requires_grad
278
+
279
+ def init_networks(self, init_type="normal", init_gain=0.02):
280
+ """Initialize all networks: 1. move to device; 2. initialize weights
281
+
282
+ Parameters:
283
+ init_type (str) -- initialization method: normal | xavier | kaiming | orthogonal
284
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal
285
+ """
286
+ import os
287
+
288
+ for name in self.model_names:
289
+ if isinstance(name, str):
290
+ net = getattr(self, "net" + name)
291
+
292
+ # Move to device
293
+ if torch.cuda.is_available():
294
+ if "LOCAL_RANK" in os.environ:
295
+ local_rank = int(os.environ["LOCAL_RANK"])
296
+ net.to(local_rank)
297
+ print(f"Initialized network {name} with device cuda:{local_rank}")
298
+ else:
299
+ net.to(0)
300
+ print(f"Initialized network {name} with device cuda:0")
301
+ else:
302
+ net.to("cpu")
303
+ print(f"Initialized network {name} with device cpu")
304
+
305
+ # Initialize weights using networks function
306
+ networks.init_weights(net, init_type, init_gain)
models/colorization_model.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .pix2pix_model import Pix2PixModel
2
+ import torch
3
+ from skimage import color # used for lab2rgb
4
+ import numpy as np
5
+
6
+
7
+ class ColorizationModel(Pix2PixModel):
8
+ """This is a subclass of Pix2PixModel for image colorization (black & white image -> colorful images).
9
+
10
+ The model training requires '-dataset_model colorization' dataset.
11
+ It trains a pix2pix model, mapping from L channel to ab channels in Lab color space.
12
+ By default, the colorization dataset will automatically set '--input_nc 1' and '--output_nc 2'.
13
+ """
14
+
15
+ @staticmethod
16
+ def modify_commandline_options(parser, is_train=True):
17
+ """Add new dataset-specific options, and rewrite default values for existing options.
18
+
19
+ Parameters:
20
+ parser -- original option parser
21
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
22
+
23
+ Returns:
24
+ the modified parser.
25
+
26
+ By default, we use 'colorization' dataset for this model.
27
+ See the original pix2pix paper (https://arxiv.org/pdf/1611.07004.pdf) and colorization results (Figure 9 in the paper)
28
+ """
29
+ Pix2PixModel.modify_commandline_options(parser, is_train)
30
+ parser.set_defaults(dataset_mode="colorization")
31
+ return parser
32
+
33
+ def __init__(self, opt):
34
+ """Initialize the class.
35
+
36
+ Parameters:
37
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
38
+
39
+ For visualization, we set 'visual_names' as 'real_A' (input real image),
40
+ 'real_B_rgb' (ground truth RGB image), and 'fake_B_rgb' (predicted RGB image)
41
+ We convert the Lab image 'real_B' (inherited from Pix2pixModel) to a RGB image 'real_B_rgb'.
42
+ we convert the Lab image 'fake_B' (inherited from Pix2pixModel) to a RGB image 'fake_B_rgb'.
43
+ """
44
+ # reuse the pix2pix model
45
+ Pix2PixModel.__init__(self, opt)
46
+ # specify the images to be visualized.
47
+ self.visual_names = ["real_A", "real_B_rgb", "fake_B_rgb"]
48
+
49
+ def lab2rgb(self, L, AB):
50
+ """Convert an Lab tensor image to a RGB numpy output
51
+ Parameters:
52
+ L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array)
53
+ AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array)
54
+
55
+ Returns:
56
+ rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array)
57
+ """
58
+ AB2 = AB * 110.0
59
+ L2 = (L + 1.0) * 50.0
60
+ Lab = torch.cat([L2, AB2], dim=1)
61
+ Lab = Lab[0].data.cpu().float().numpy()
62
+ Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0))
63
+ rgb = color.lab2rgb(Lab) * 255
64
+ return rgb
65
+
66
+ def compute_visuals(self):
67
+ """Calculate additional output images for visdom and HTML visualization"""
68
+ self.real_B_rgb = self.lab2rgb(self.real_A, self.real_B)
69
+ self.fake_B_rgb = self.lab2rgb(self.real_A, self.fake_B)
models/cycle_gan_model.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import itertools
3
+ from util.image_pool import ImagePool
4
+ from .base_model import BaseModel
5
+ from . import networks
6
+
7
+
8
+ class CycleGANModel(BaseModel):
9
+ """
10
+ This class implements the CycleGAN model, for learning image-to-image translation without paired data.
11
+
12
+ The model training requires '--dataset_mode unaligned' dataset.
13
+ By default, it uses a '--netG resnet_9blocks' ResNet generator,
14
+ a '--netD basic' discriminator (PatchGAN introduced by pix2pix),
15
+ and a least-square GANs objective ('--gan_mode lsgan').
16
+
17
+ CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf
18
+ """
19
+
20
+ @staticmethod
21
+ def modify_commandline_options(parser, is_train=True):
22
+ """Add new dataset-specific options, and rewrite default values for existing options.
23
+
24
+ Parameters:
25
+ parser -- original option parser
26
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
27
+
28
+ Returns:
29
+ the modified parser.
30
+
31
+ For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses.
32
+ A (source domain), B (target domain).
33
+ Generators: G_A: A -> B; G_B: B -> A.
34
+ Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A.
35
+ Forward cycle loss: lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper)
36
+ Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper)
37
+ Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper)
38
+ Dropout is not used in the original CycleGAN paper.
39
+ """
40
+ parser.set_defaults(no_dropout=True) # default CycleGAN did not use dropout
41
+ if is_train:
42
+ parser.add_argument("--lambda_A", type=float, default=10.0, help="weight for cycle loss (A -> B -> A)")
43
+ parser.add_argument("--lambda_B", type=float, default=10.0, help="weight for cycle loss (B -> A -> B)")
44
+ parser.add_argument(
45
+ "--lambda_identity",
46
+ type=float,
47
+ default=0.5,
48
+ help="use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1",
49
+ )
50
+
51
+ return parser
52
+
53
+ def __init__(self, opt):
54
+ """Initialize the CycleGAN class.
55
+
56
+ Parameters:
57
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
58
+ """
59
+ BaseModel.__init__(self, opt)
60
+ # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
61
+ self.loss_names = ["D_A", "G_A", "cycle_A", "idt_A", "D_B", "G_B", "cycle_B", "idt_B"]
62
+ # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
63
+ visual_names_A = ["real_A", "fake_B", "rec_A"]
64
+ visual_names_B = ["real_B", "fake_A", "rec_B"]
65
+ if self.isTrain and self.opt.lambda_identity > 0.0: # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_B(A)
66
+ visual_names_A.append("idt_B")
67
+ visual_names_B.append("idt_A")
68
+
69
+ self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B
70
+ # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
71
+ if self.isTrain:
72
+ self.model_names = ["G_A", "G_B", "D_A", "D_B"]
73
+ else: # during test time, only load Gs
74
+ self.model_names = ["G_A", "G_B"]
75
+
76
+ # define networks (both Generators and discriminators)
77
+ # The naming is different from those used in the paper.
78
+ # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
79
+ self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain)
80
+ self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain)
81
+
82
+ if self.isTrain: # define discriminators
83
+ self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain)
84
+ self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain)
85
+
86
+ if self.isTrain:
87
+ if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels
88
+ assert opt.input_nc == opt.output_nc
89
+ self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images
90
+ self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images
91
+ # define loss functions
92
+ self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss.
93
+ self.criterionCycle = torch.nn.L1Loss()
94
+ self.criterionIdt = torch.nn.L1Loss()
95
+ # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
96
+ self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
97
+ self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
98
+ self.optimizers.append(self.optimizer_G)
99
+ self.optimizers.append(self.optimizer_D)
100
+
101
+ def set_input(self, input):
102
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
103
+
104
+ Parameters:
105
+ input (dict): include the data itself and its metadata information.
106
+
107
+ The option 'direction' can be used to swap domain A and domain B.
108
+ """
109
+ AtoB = self.opt.direction == "AtoB"
110
+ self.real_A = input["A" if AtoB else "B"].to(self.device)
111
+ self.real_B = input["B" if AtoB else "A"].to(self.device)
112
+ self.image_paths = input["A_paths" if AtoB else "B_paths"]
113
+
114
+ def forward(self):
115
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
116
+ self.fake_B = self.netG_A(self.real_A) # G_A(A)
117
+ self.rec_A = self.netG_B(self.fake_B) # G_B(G_A(A))
118
+ self.fake_A = self.netG_B(self.real_B) # G_B(B)
119
+ self.rec_B = self.netG_A(self.fake_A) # G_A(G_B(B))
120
+
121
+ def backward_D_basic(self, netD, real, fake):
122
+ """Calculate GAN loss for the discriminator
123
+
124
+ Parameters:
125
+ netD (network) -- the discriminator D
126
+ real (tensor array) -- real images
127
+ fake (tensor array) -- images generated by a generator
128
+
129
+ Return the discriminator loss.
130
+ We also call loss_D.backward() to calculate the gradients.
131
+ """
132
+ # Real
133
+ pred_real = netD(real)
134
+ loss_D_real = self.criterionGAN(pred_real, True)
135
+ # Fake
136
+ pred_fake = netD(fake.detach())
137
+ loss_D_fake = self.criterionGAN(pred_fake, False)
138
+ # Combined loss and calculate gradients
139
+ loss_D = (loss_D_real + loss_D_fake) * 0.5
140
+ loss_D.backward()
141
+ return loss_D
142
+
143
+ def backward_D_A(self):
144
+ """Calculate GAN loss for discriminator D_A"""
145
+ fake_B = self.fake_B_pool.query(self.fake_B)
146
+ self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)
147
+
148
+ def backward_D_B(self):
149
+ """Calculate GAN loss for discriminator D_B"""
150
+ fake_A = self.fake_A_pool.query(self.fake_A)
151
+ self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
152
+
153
+ def backward_G(self):
154
+ """Calculate the loss for generators G_A and G_B"""
155
+ lambda_idt = self.opt.lambda_identity
156
+ lambda_A = self.opt.lambda_A
157
+ lambda_B = self.opt.lambda_B
158
+ # Identity loss
159
+ if lambda_idt > 0:
160
+ # G_A should be identity if real_B is fed: ||G_A(B) - B||
161
+ self.idt_A = self.netG_A(self.real_B)
162
+ self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt
163
+ # G_B should be identity if real_A is fed: ||G_B(A) - A||
164
+ self.idt_B = self.netG_B(self.real_A)
165
+ self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt
166
+ else:
167
+ self.loss_idt_A = 0
168
+ self.loss_idt_B = 0
169
+
170
+ # GAN loss D_A(G_A(A))
171
+ self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)
172
+ # GAN loss D_B(G_B(B))
173
+ self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)
174
+ # Forward cycle loss || G_B(G_A(A)) - A||
175
+ self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A
176
+ # Backward cycle loss || G_A(G_B(B)) - B||
177
+ self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B
178
+ # combined loss and calculate gradients
179
+ self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B
180
+ self.loss_G.backward()
181
+
182
+ def optimize_parameters(self):
183
+ """Calculate losses, gradients, and update network weights; called in every training iteration"""
184
+ # forward
185
+ self.forward() # compute fake images and reconstruction images.
186
+ # G_A and G_B
187
+ self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs
188
+ self.optimizer_G.zero_grad() # set G_A and G_B's gradients to zero
189
+ self.backward_G() # calculate gradients for G_A and G_B
190
+ self.optimizer_G.step() # update G_A and G_B's weights
191
+ # D_A and D_B
192
+ self.set_requires_grad([self.netD_A, self.netD_B], True)
193
+ self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero
194
+ self.backward_D_A() # calculate gradients for D_A
195
+ self.backward_D_B() # calculate graidents for D_B
196
+ self.optimizer_D.step() # update D_A and D_B's weights
models/networks.py ADDED
@@ -0,0 +1,588 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import init
4
+ import functools
5
+ from torch.optim import lr_scheduler
6
+
7
+
8
+ ###############################################################################
9
+ # Helper Functions
10
+ ###############################################################################
11
+
12
+
13
+ class Identity(nn.Module):
14
+ def forward(self, x):
15
+ return x
16
+
17
+
18
+ def get_norm_layer(norm_type="instance"):
19
+ """Return a normalization layer
20
+
21
+ Parameters:
22
+ norm_type (str) -- the name of the normalization layer: batch | instance | none
23
+
24
+ For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
25
+ For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
26
+ """
27
+ if norm_type == "batch":
28
+ norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
29
+ elif norm_type == "syncbatch":
30
+ norm_layer = functools.partial(nn.SyncBatchNorm, affine=True, track_running_stats=True)
31
+ elif norm_type == "instance":
32
+ norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
33
+ elif norm_type == "none":
34
+
35
+ def norm_layer(x):
36
+ return Identity()
37
+
38
+ else:
39
+ raise NotImplementedError("normalization layer [%s] is not found" % norm_type)
40
+ return norm_layer
41
+
42
+
43
+ def get_scheduler(optimizer, opt):
44
+ """Return a learning rate scheduler
45
+
46
+ Parameters:
47
+ optimizer -- the optimizer of the network
48
+ opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.
49
+ opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
50
+
51
+ For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs
52
+ and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs.
53
+ For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
54
+ See https://pytorch.org/docs/stable/optim.html for more details.
55
+ """
56
+ if opt.lr_policy == "linear":
57
+
58
+ def lambda_rule(epoch):
59
+ lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1)
60
+ return lr_l
61
+
62
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
63
+ elif opt.lr_policy == "step":
64
+ scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
65
+ elif opt.lr_policy == "plateau":
66
+ scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.2, threshold=0.01, patience=5)
67
+ elif opt.lr_policy == "cosine":
68
+ scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
69
+ else:
70
+ return NotImplementedError("learning rate policy [%s] is not implemented", opt.lr_policy)
71
+ return scheduler
72
+
73
+
74
+ def init_weights(net, init_type="normal", init_gain=0.02):
75
+ """Initialize network weights.
76
+
77
+ Parameters:
78
+ net (network) -- network to be initialized
79
+ init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
80
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
81
+
82
+ We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
83
+ work better for some applications. Feel free to try yourself.
84
+ """
85
+
86
+ def init_func(m): # define the initialization function
87
+ classname = m.__class__.__name__
88
+ if hasattr(m, "weight") and (classname.find("Conv") != -1 or classname.find("Linear") != -1):
89
+ if init_type == "normal":
90
+ init.normal_(m.weight.data, 0.0, init_gain)
91
+ elif init_type == "xavier":
92
+ init.xavier_normal_(m.weight.data, gain=init_gain)
93
+ elif init_type == "kaiming":
94
+ init.kaiming_normal_(m.weight.data, a=0, mode="fan_in")
95
+ elif init_type == "orthogonal":
96
+ init.orthogonal_(m.weight.data, gain=init_gain)
97
+ else:
98
+ raise NotImplementedError("initialization method [%s] is not implemented" % init_type)
99
+ if hasattr(m, "bias") and m.bias is not None:
100
+ init.constant_(m.bias.data, 0.0)
101
+ elif classname.find("BatchNorm2d") != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
102
+ init.normal_(m.weight.data, 1.0, init_gain)
103
+ init.constant_(m.bias.data, 0.0)
104
+
105
+ print("initialize network with %s" % init_type)
106
+ net.apply(init_func) # apply the initialization function <init_func>
107
+
108
+
109
+ def init_net(net, init_type="normal", init_gain=0.02):
110
+ """Initialize a network: 1. register CPU/GPU device; 2. initialize the network weights
111
+ Parameters:
112
+ net (network) -- the network to be initialized
113
+ init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
114
+ gain (float) -- scaling factor for normal, xavier and orthogonal.
115
+
116
+ Return an initialized network.
117
+ """
118
+ import os
119
+
120
+ if torch.cuda.is_available():
121
+ if "LOCAL_RANK" in os.environ:
122
+ local_rank = int(os.environ["LOCAL_RANK"])
123
+ net.to(local_rank)
124
+ print(f"Initialized with device cuda:{local_rank}")
125
+ else:
126
+ net.to(0)
127
+ print("Initialized with device cuda:0")
128
+ init_weights(net, init_type, init_gain=init_gain)
129
+ return net
130
+
131
+
132
+ def define_G(input_nc, output_nc, ngf, netG, norm="batch", use_dropout=False, init_type="normal", init_gain=0.02):
133
+ """Create a generator
134
+
135
+ Parameters:
136
+ input_nc (int) -- the number of channels in input images
137
+ output_nc (int) -- the number of channels in output images
138
+ ngf (int) -- the number of filters in the last conv layer
139
+ netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_128 | unet_256
140
+ norm (str) -- the name of normalization layers used in the network: batch | instance | none
141
+ use_dropout (bool) -- if use dropout layers.
142
+ init_type (str) -- the name of our initialization method.
143
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
144
+
145
+ Returns a generator
146
+ """
147
+ net = None
148
+ norm_layer = get_norm_layer(norm_type=norm)
149
+
150
+ if netG == "resnet_9blocks":
151
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9)
152
+ elif netG == "resnet_6blocks":
153
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6)
154
+ elif netG == "unet_128":
155
+ net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
156
+ elif netG == "unet_256":
157
+ net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
158
+ else:
159
+ raise NotImplementedError("Generator model name [%s] is not recognized" % netG)
160
+ return net
161
+
162
+
163
+ def define_D(input_nc, ndf, netD, n_layers_D=3, norm="batch", init_type="normal", init_gain=0.02):
164
+ """Create a discriminator
165
+
166
+ Parameters:
167
+ input_nc (int) -- the number of channels in input images
168
+ ndf (int) -- the number of filters in the first conv layer
169
+ netD (str) -- the architecture's name: basic | n_layers | pixel
170
+ n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers'
171
+ norm (str) -- the type of normalization layers used in the network.
172
+ init_type (str) -- the name of the initialization method.
173
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
174
+
175
+ Returns a discriminator
176
+
177
+ Our current implementation provides three types of discriminators:
178
+ [basic]: 'PatchGAN' classifier described in the original pix2pix paper.
179
+ It can classify whether 70×70 overlapping patches are real or fake.
180
+ Such a patch-level discriminator architecture has fewer parameters
181
+ than a full-image discriminator and can work on arbitrarily-sized images
182
+ in a fully convolutional fashion.
183
+
184
+ [n_layers]: With this mode, you can specify the number of conv layers in the discriminator
185
+ with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).)
186
+
187
+ [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not.
188
+ It encourages greater color diversity but has no effect on spatial statistics.
189
+
190
+ The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity.
191
+ """
192
+ net = None
193
+ norm_layer = get_norm_layer(norm_type=norm)
194
+
195
+ if netD == "basic": # default PatchGAN classifier
196
+ net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer)
197
+ elif netD == "n_layers": # more options
198
+ net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer)
199
+ elif netD == "pixel": # classify if each pixel is real or fake
200
+ net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer)
201
+ else:
202
+ raise NotImplementedError("Discriminator model name [%s] is not recognized" % netD)
203
+ return net
204
+
205
+
206
+ ##############################################################################
207
+ # Classes
208
+ ##############################################################################
209
+ class GANLoss(nn.Module):
210
+ """Define different GAN objectives.
211
+
212
+ The GANLoss class abstracts away the need to create the target label tensor
213
+ that has the same size as the input.
214
+ """
215
+
216
+ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
217
+ """Initialize the GANLoss class.
218
+
219
+ Parameters:
220
+ gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
221
+ target_real_label (bool) - - label for a real image
222
+ target_fake_label (bool) - - label of a fake image
223
+
224
+ Note: Do not use sigmoid as the last layer of Discriminator.
225
+ LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
226
+ """
227
+ super(GANLoss, self).__init__()
228
+ self.register_buffer("real_label", torch.tensor(target_real_label))
229
+ self.register_buffer("fake_label", torch.tensor(target_fake_label))
230
+ self.gan_mode = gan_mode
231
+ if gan_mode == "lsgan":
232
+ self.loss = nn.MSELoss()
233
+ elif gan_mode == "vanilla":
234
+ self.loss = nn.BCEWithLogitsLoss()
235
+ elif gan_mode in ["wgangp"]:
236
+ self.loss = None
237
+ else:
238
+ raise NotImplementedError("gan mode %s not implemented" % gan_mode)
239
+
240
+ def get_target_tensor(self, prediction, target_is_real):
241
+ """Create label tensors with the same size as the input.
242
+
243
+ Parameters:
244
+ prediction (tensor) - - tpyically the prediction from a discriminator
245
+ target_is_real (bool) - - if the ground truth label is for real images or fake images
246
+
247
+ Returns:
248
+ A label tensor filled with ground truth label, and with the size of the input
249
+ """
250
+
251
+ if target_is_real:
252
+ target_tensor = self.real_label
253
+ else:
254
+ target_tensor = self.fake_label
255
+ return target_tensor.expand_as(prediction)
256
+
257
+ def __call__(self, prediction, target_is_real):
258
+ """Calculate loss given Discriminator's output and grount truth labels.
259
+
260
+ Parameters:
261
+ prediction (tensor) - - tpyically the prediction output from a discriminator
262
+ target_is_real (bool) - - if the ground truth label is for real images or fake images
263
+
264
+ Returns:
265
+ the calculated loss.
266
+ """
267
+ if self.gan_mode in ["lsgan", "vanilla"]:
268
+ target_tensor = self.get_target_tensor(prediction, target_is_real)
269
+ loss = self.loss(prediction, target_tensor)
270
+ elif self.gan_mode == "wgangp":
271
+ if target_is_real:
272
+ loss = -prediction.mean()
273
+ else:
274
+ loss = prediction.mean()
275
+ return loss
276
+
277
+
278
+ def cal_gradient_penalty(netD, real_data, fake_data, device, type="mixed", constant=1.0, lambda_gp=10.0):
279
+ """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
280
+
281
+ Arguments:
282
+ netD (network) -- discriminator network
283
+ real_data (tensor array) -- real images
284
+ fake_data (tensor array) -- generated images from the generator
285
+ device (str) -- GPU / CPU
286
+ type (str) -- if we mix real and fake data or not [real | fake | mixed].
287
+ constant (float) -- the constant used in formula ( ||gradient||_2 - constant)^2
288
+ lambda_gp (float) -- weight for this loss
289
+
290
+ Returns the gradient penalty loss
291
+ """
292
+ if lambda_gp > 0.0:
293
+ if type == "real": # either use real images, fake images, or a linear interpolation of two.
294
+ interpolatesv = real_data
295
+ elif type == "fake":
296
+ interpolatesv = fake_data
297
+ elif type == "mixed":
298
+ alpha = torch.rand(real_data.shape[0], 1, device=device)
299
+ alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape)
300
+ interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
301
+ else:
302
+ raise NotImplementedError(f"{type} not implemented")
303
+ interpolatesv.requires_grad_(True)
304
+ disc_interpolates = netD(interpolatesv)
305
+ gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True)
306
+ gradients = gradients[0].view(real_data.size(0), -1) # flat the data
307
+ gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
308
+ return gradient_penalty, gradients
309
+ else:
310
+ return 0.0, None
311
+
312
+
313
+ class ResnetGenerator(nn.Module):
314
+ """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations.
315
+
316
+ We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
317
+ """
318
+
319
+ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type="reflect"):
320
+ """Construct a Resnet-based generator
321
+
322
+ Parameters:
323
+ input_nc (int) -- the number of channels in input images
324
+ output_nc (int) -- the number of channels in output images
325
+ ngf (int) -- the number of filters in the last conv layer
326
+ norm_layer -- normalization layer
327
+ use_dropout (bool) -- if use dropout layers
328
+ n_blocks (int) -- the number of ResNet blocks
329
+ padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero
330
+ """
331
+ assert n_blocks >= 0
332
+ super(ResnetGenerator, self).__init__()
333
+ if type(norm_layer) == functools.partial:
334
+ use_bias = norm_layer.func == nn.InstanceNorm2d
335
+ else:
336
+ use_bias = norm_layer == nn.InstanceNorm2d
337
+
338
+ model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)]
339
+
340
+ n_downsampling = 2
341
+ for i in range(n_downsampling): # add downsampling layers
342
+ mult = 2**i
343
+ model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)]
344
+
345
+ mult = 2**n_downsampling
346
+ for i in range(n_blocks): # add ResNet blocks
347
+
348
+ model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
349
+
350
+ for i in range(n_downsampling): # add upsampling layers
351
+ mult = 2 ** (n_downsampling - i)
352
+ model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)]
353
+ model += [nn.ReflectionPad2d(3)]
354
+ model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
355
+ model += [nn.Tanh()]
356
+
357
+ self.model = nn.Sequential(*model)
358
+
359
+ def forward(self, input):
360
+ """Standard forward"""
361
+ return self.model(input)
362
+
363
+
364
+ class ResnetBlock(nn.Module):
365
+ """Define a Resnet block"""
366
+
367
+ def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
368
+ """Initialize the Resnet block
369
+
370
+ A resnet block is a conv block with skip connections
371
+ We construct a conv block with build_conv_block function,
372
+ and implement skip connections in <forward> function.
373
+ Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
374
+ """
375
+ super(ResnetBlock, self).__init__()
376
+ self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
377
+
378
+ def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
379
+ """Construct a convolutional block.
380
+
381
+ Parameters:
382
+ dim (int) -- the number of channels in the conv layer.
383
+ padding_type (str) -- the name of padding layer: reflect | replicate | zero
384
+ norm_layer -- normalization layer
385
+ use_dropout (bool) -- if use dropout layers.
386
+ use_bias (bool) -- if the conv layer uses bias or not
387
+
388
+ Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
389
+ """
390
+ conv_block = []
391
+ p = 0
392
+ if padding_type == "reflect":
393
+ conv_block += [nn.ReflectionPad2d(1)]
394
+ elif padding_type == "replicate":
395
+ conv_block += [nn.ReplicationPad2d(1)]
396
+ elif padding_type == "zero":
397
+ p = 1
398
+ else:
399
+ raise NotImplementedError("padding [%s] is not implemented" % padding_type)
400
+
401
+ conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
402
+ if use_dropout:
403
+ conv_block += [nn.Dropout(0.5)]
404
+
405
+ p = 0
406
+ if padding_type == "reflect":
407
+ conv_block += [nn.ReflectionPad2d(1)]
408
+ elif padding_type == "replicate":
409
+ conv_block += [nn.ReplicationPad2d(1)]
410
+ elif padding_type == "zero":
411
+ p = 1
412
+ else:
413
+ raise NotImplementedError("padding [%s] is not implemented" % padding_type)
414
+ conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)]
415
+
416
+ return nn.Sequential(*conv_block)
417
+
418
+ def forward(self, x):
419
+ """Forward function (with skip connections)"""
420
+ out = x + self.conv_block(x) # add skip connections
421
+ return out
422
+
423
+
424
+ class UnetGenerator(nn.Module):
425
+ """Create a Unet-based generator"""
426
+
427
+ def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
428
+ """Construct a Unet generator
429
+ Parameters:
430
+ input_nc (int) -- the number of channels in input images
431
+ output_nc (int) -- the number of channels in output images
432
+ num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
433
+ image of size 128x128 will become of size 1x1 # at the bottleneck
434
+ ngf (int) -- the number of filters in the last conv layer
435
+ norm_layer -- normalization layer
436
+
437
+ We construct the U-Net from the innermost layer to the outermost layer.
438
+ It is a recursive process.
439
+ """
440
+ super(UnetGenerator, self).__init__()
441
+ # construct unet structure
442
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
443
+ for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
444
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
445
+ # gradually reduce the number of filters from ngf * 8 to ngf
446
+ unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
447
+ unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
448
+ unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
449
+ self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
450
+
451
+ def forward(self, input):
452
+ """Standard forward"""
453
+ return self.model(input)
454
+
455
+
456
+ class UnetSkipConnectionBlock(nn.Module):
457
+ """Defines the Unet submodule with skip connection.
458
+ X -------------------identity----------------------
459
+ |-- downsampling -- |submodule| -- upsampling --|
460
+ """
461
+
462
+ def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
463
+ """Construct a Unet submodule with skip connections.
464
+
465
+ Parameters:
466
+ outer_nc (int) -- the number of filters in the outer conv layer
467
+ inner_nc (int) -- the number of filters in the inner conv layer
468
+ input_nc (int) -- the number of channels in input images/features
469
+ submodule (UnetSkipConnectionBlock) -- previously defined submodules
470
+ outermost (bool) -- if this module is the outermost module
471
+ innermost (bool) -- if this module is the innermost module
472
+ norm_layer -- normalization layer
473
+ use_dropout (bool) -- if use dropout layers.
474
+ """
475
+ super(UnetSkipConnectionBlock, self).__init__()
476
+ self.outermost = outermost
477
+ if type(norm_layer) == functools.partial:
478
+ use_bias = norm_layer.func == nn.InstanceNorm2d
479
+ else:
480
+ use_bias = norm_layer == nn.InstanceNorm2d
481
+ if input_nc is None:
482
+ input_nc = outer_nc
483
+ downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
484
+ downrelu = nn.LeakyReLU(0.2, True)
485
+ downnorm = norm_layer(inner_nc)
486
+ uprelu = nn.ReLU(True)
487
+ upnorm = norm_layer(outer_nc)
488
+
489
+ if outermost:
490
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1)
491
+ down = [downconv]
492
+ up = [uprelu, upconv, nn.Tanh()]
493
+ model = down + [submodule] + up
494
+ elif innermost:
495
+ upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
496
+ down = [downrelu, downconv]
497
+ up = [uprelu, upconv, upnorm]
498
+ model = down + up
499
+ else:
500
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
501
+ down = [downrelu, downconv, downnorm]
502
+ up = [uprelu, upconv, upnorm]
503
+
504
+ if use_dropout:
505
+ model = down + [submodule] + up + [nn.Dropout(0.5)]
506
+ else:
507
+ model = down + [submodule] + up
508
+
509
+ self.model = nn.Sequential(*model)
510
+
511
+ def forward(self, x):
512
+ if self.outermost:
513
+ return self.model(x)
514
+ else: # add skip connections
515
+ return torch.cat([x, self.model(x)], 1)
516
+
517
+
518
+ class NLayerDiscriminator(nn.Module):
519
+ """Defines a PatchGAN discriminator"""
520
+
521
+ def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
522
+ """Construct a PatchGAN discriminator
523
+
524
+ Parameters:
525
+ input_nc (int) -- the number of channels in input images
526
+ ndf (int) -- the number of filters in the last conv layer
527
+ n_layers (int) -- the number of conv layers in the discriminator
528
+ norm_layer -- normalization layer
529
+ """
530
+ super(NLayerDiscriminator, self).__init__()
531
+ if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
532
+ use_bias = norm_layer.func == nn.InstanceNorm2d
533
+ else:
534
+ use_bias = norm_layer == nn.InstanceNorm2d
535
+
536
+ kw = 4
537
+ padw = 1
538
+ sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
539
+ nf_mult = 1
540
+ nf_mult_prev = 1
541
+ for n in range(1, n_layers): # gradually increase the number of filters
542
+ nf_mult_prev = nf_mult
543
+ nf_mult = min(2**n, 8)
544
+ sequence += [nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True)]
545
+
546
+ nf_mult_prev = nf_mult
547
+ nf_mult = min(2**n_layers, 8)
548
+ sequence += [nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True)]
549
+
550
+ sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
551
+ self.model = nn.Sequential(*sequence)
552
+
553
+ def forward(self, input):
554
+ """Standard forward."""
555
+ return self.model(input)
556
+
557
+
558
+ class PixelDiscriminator(nn.Module):
559
+ """Defines a 1x1 PatchGAN discriminator (pixelGAN)"""
560
+
561
+ def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d):
562
+ """Construct a 1x1 PatchGAN discriminator
563
+
564
+ Parameters:
565
+ input_nc (int) -- the number of channels in input images
566
+ ndf (int) -- the number of filters in the last conv layer
567
+ norm_layer -- normalization layer
568
+ """
569
+ super(PixelDiscriminator, self).__init__()
570
+ if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
571
+ use_bias = norm_layer.func == nn.InstanceNorm2d
572
+ else:
573
+ use_bias = norm_layer == nn.InstanceNorm2d
574
+
575
+ self.net = [
576
+ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
577
+ nn.LeakyReLU(0.2, True),
578
+ nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
579
+ norm_layer(ndf * 2),
580
+ nn.LeakyReLU(0.2, True),
581
+ nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias),
582
+ ]
583
+
584
+ self.net = nn.Sequential(*self.net)
585
+
586
+ def forward(self, input):
587
+ """Standard forward."""
588
+ return self.net(input)
models/pix2pix_model.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from .base_model import BaseModel
3
+ from . import networks
4
+
5
+
6
+ class Pix2PixModel(BaseModel):
7
+ """This class implements the pix2pix model, for learning a mapping from input images to output images given paired data.
8
+
9
+ The model training requires '--dataset_mode aligned' dataset.
10
+ By default, it uses a '--netG unet256' U-Net generator,
11
+ a '--netD basic' discriminator (PatchGAN),
12
+ and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper).
13
+
14
+ pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf
15
+ """
16
+
17
+ @staticmethod
18
+ def modify_commandline_options(parser, is_train=True):
19
+ """Add new dataset-specific options, and rewrite default values for existing options.
20
+
21
+ Parameters:
22
+ parser -- original option parser
23
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
24
+
25
+ Returns:
26
+ the modified parser.
27
+
28
+ For pix2pix, we do not use image buffer
29
+ The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1
30
+ By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets.
31
+ """
32
+ # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/)
33
+ parser.set_defaults(norm="batch", netG="unet_256", dataset_mode="aligned")
34
+ if is_train:
35
+ parser.set_defaults(pool_size=0, gan_mode="vanilla")
36
+ parser.add_argument("--lambda_L1", type=float, default=100.0, help="weight for L1 loss")
37
+
38
+ return parser
39
+
40
+ def __init__(self, opt):
41
+ """Initialize the pix2pix class.
42
+
43
+ Parameters:
44
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
45
+ """
46
+ BaseModel.__init__(self, opt)
47
+ # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
48
+ self.loss_names = ["G_GAN", "G_L1", "D_real", "D_fake"]
49
+ # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
50
+ self.visual_names = ["real_A", "fake_B", "real_B"]
51
+ # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>
52
+ if self.isTrain:
53
+ self.model_names = ["G", "D"]
54
+ else: # during test time, only load G
55
+ self.model_names = ["G"]
56
+ self.device = opt.device
57
+ # define networks (both generator and discriminator)
58
+ self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain)
59
+
60
+ if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc
61
+ self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain)
62
+
63
+ if self.isTrain:
64
+ # define loss functions
65
+ self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # move to the device for custom loss
66
+ self.criterionL1 = torch.nn.L1Loss()
67
+ # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
68
+ self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
69
+ self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
70
+ self.optimizers.append(self.optimizer_G)
71
+ self.optimizers.append(self.optimizer_D)
72
+
73
+ def set_input(self, input):
74
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
75
+
76
+ Parameters:
77
+ input (dict): include the data itself and its metadata information.
78
+
79
+ The option 'direction' can be used to swap images in domain A and domain B.
80
+ """
81
+ AtoB = self.opt.direction == "AtoB"
82
+ self.real_A = input["A" if AtoB else "B"].to(self.device)
83
+ self.real_B = input["B" if AtoB else "A"].to(self.device)
84
+ self.image_paths = input["A_paths" if AtoB else "B_paths"]
85
+
86
+ def forward(self):
87
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
88
+ self.fake_B = self.netG(self.real_A) # G(A)
89
+
90
+ def backward_D(self):
91
+ """Calculate GAN loss for the discriminator"""
92
+ # Fake; stop backprop to the generator by detaching fake_B
93
+ fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator
94
+ pred_fake = self.netD(fake_AB.detach())
95
+ self.loss_D_fake = self.criterionGAN(pred_fake, False)
96
+ # Real
97
+ real_AB = torch.cat((self.real_A, self.real_B), 1)
98
+ pred_real = self.netD(real_AB)
99
+ self.loss_D_real = self.criterionGAN(pred_real, True)
100
+ # combine loss and calculate gradients
101
+ self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
102
+ self.loss_D.backward()
103
+
104
+ def backward_G(self):
105
+ """Calculate GAN and L1 loss for the generator"""
106
+ # First, G(A) should fake the discriminator
107
+ fake_AB = torch.cat((self.real_A, self.fake_B), 1)
108
+ pred_fake = self.netD(fake_AB)
109
+ self.loss_G_GAN = self.criterionGAN(pred_fake, True)
110
+ # Second, G(A) = B
111
+ self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1
112
+ # combine loss and calculate gradients
113
+ self.loss_G = self.loss_G_GAN + self.loss_G_L1
114
+ self.loss_G.backward()
115
+
116
+ def optimize_parameters(self):
117
+ self.forward() # compute fake images: G(A)
118
+ # update D
119
+ self.set_requires_grad(self.netD, True) # enable backprop for D
120
+ self.optimizer_D.zero_grad() # set D's gradients to zero
121
+ self.backward_D() # calculate gradients for D
122
+ self.optimizer_D.step() # update D's weights
123
+ # update G
124
+ self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G
125
+ self.optimizer_G.zero_grad() # set G's gradients to zero
126
+ self.backward_G() # calculate graidents for G
127
+ self.optimizer_G.step() # update G's weights
models/template_model.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Model class template
2
+
3
+ This module provides a template for users to implement custom models.
4
+ You can specify '--model template' to use this model.
5
+ The class name should be consistent with both the filename and its model option.
6
+ The filename should be <model>_dataset.py
7
+ The class name should be <Model>Dataset.py
8
+ It implements a simple image-to-image translation baseline based on regression loss.
9
+ Given input-output pairs (data_A, data_B), it learns a network netG that can minimize the following L1 loss:
10
+ min_<netG> ||netG(data_A) - data_B||_1
11
+ You need to implement the following functions:
12
+ <modify_commandline_options>: Add model-specific options and rewrite default values for existing options.
13
+ <__init__>: Initialize this model class.
14
+ <set_input>: Unpack input data and perform data pre-processing.
15
+ <forward>: Run forward pass. This will be called by both <optimize_parameters> and <test>.
16
+ <optimize_parameters>: Update network weights; it will be called in every training iteration.
17
+ """
18
+
19
+ import torch
20
+ from .base_model import BaseModel
21
+ from . import networks
22
+
23
+
24
+ class TemplateModel(BaseModel):
25
+ @staticmethod
26
+ def modify_commandline_options(parser, is_train=True):
27
+ """Add new model-specific options and rewrite default values for existing options.
28
+
29
+ Parameters:
30
+ parser -- the option parser
31
+ is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options.
32
+
33
+ Returns:
34
+ the modified parser.
35
+ """
36
+ parser.set_defaults(dataset_mode="aligned") # You can rewrite default values for this model. For example, this model usually uses aligned dataset as its dataset.
37
+ if is_train:
38
+ parser.add_argument("--lambda_regression", type=float, default=1.0, help="weight for the regression loss") # You can define new arguments for this model.
39
+
40
+ return parser
41
+
42
+ def __init__(self, opt):
43
+ """Initialize this model class.
44
+
45
+ Parameters:
46
+ opt -- training/test options
47
+
48
+ A few things can be done here.
49
+ - (required) call the initialization function of BaseModel
50
+ - define loss function, visualization images, model names, and optimizers
51
+ """
52
+ BaseModel.__init__(self, opt) # call the initialization method of BaseModel
53
+ # specify the training losses you want to print out. The program will call base_model.get_current_losses to plot the losses to the console and save them to the disk.
54
+ self.loss_names = ["G"]
55
+ # specify the images you want to save and display. The program will call base_model.get_current_visuals to save and display these images.
56
+ self.visual_names = ["data_A", "data_B", "output"]
57
+ # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks to save and load networks.
58
+ # you can use opt.isTrain to specify different behaviors for training and test. For example, some networks will not be used during test, and you don't need to load them.
59
+ self.model_names = ["G"]
60
+ # define networks; you can use opt.isTrain to specify different behaviors for training and test.
61
+ self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG)
62
+ if self.isTrain: # only defined during training time
63
+ # define your loss functions. You can use losses provided by torch.nn such as torch.nn.L1Loss.
64
+ # We also provide a GANLoss class "networks.GANLoss". self.criterionGAN = networks.GANLoss().to(self.device)
65
+ self.criterionLoss = torch.nn.L1Loss()
66
+ # define and initialize optimizers. You can define one optimizer for each network.
67
+ # If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
68
+ self.optimizer = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
69
+ self.optimizers = [self.optimizer]
70
+
71
+ # Our program will automatically call <model.setup> to define schedulers, load networks, and print networks
72
+
73
+ def set_input(self, input):
74
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
75
+
76
+ Parameters:
77
+ input: a dictionary that contains the data itself and its metadata information.
78
+ """
79
+ AtoB = self.opt.direction == "AtoB" # use <direction> to swap data_A and data_B
80
+ self.data_A = input["A" if AtoB else "B"].to(self.device) # get image data A
81
+ self.data_B = input["B" if AtoB else "A"].to(self.device) # get image data B
82
+ self.image_paths = input["A_paths" if AtoB else "B_paths"] # get image paths
83
+
84
+ def forward(self):
85
+ """Run forward pass. This will be called by both functions <optimize_parameters> and <test>."""
86
+ self.output = self.netG(self.data_A) # generate output image given the input data_A
87
+
88
+ def backward(self):
89
+ """Calculate losses, gradients, and update network weights; called in every training iteration"""
90
+ # caculate the intermediate results if necessary; here self.output has been computed during function <forward>
91
+ # calculate loss given the input and intermediate results
92
+ self.loss_G = self.criterionLoss(self.output, self.data_B) * self.opt.lambda_regression
93
+ self.loss_G.backward() # calculate gradients of network G w.r.t. loss_G
94
+
95
+ def optimize_parameters(self):
96
+ """Update network weights; it will be called in every training iteration."""
97
+ self.forward() # first call forward to calculate intermediate results
98
+ self.optimizer.zero_grad() # clear network G's existing gradients
99
+ self.backward() # calculate gradients for network G
100
+ self.optimizer.step() # update gradients for network G
models/test_model.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base_model import BaseModel
2
+ from . import networks
3
+
4
+
5
+ class TestModel(BaseModel):
6
+ """This TesteModel can be used to generate CycleGAN results for only one direction.
7
+ This model will automatically set '--dataset_mode single', which only loads the images from one collection.
8
+
9
+ See the test instruction for more details.
10
+ """
11
+
12
+ @staticmethod
13
+ def modify_commandline_options(parser, is_train=True):
14
+ """Add new dataset-specific options, and rewrite default values for existing options.
15
+
16
+ Parameters:
17
+ parser -- original option parser
18
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
19
+
20
+ Returns:
21
+ the modified parser.
22
+
23
+ The model can only be used during test time. It requires '--dataset_mode single'.
24
+ You need to specify the network using the option '--model_suffix'.
25
+ """
26
+ assert not is_train, "TestModel cannot be used during training time"
27
+ parser.set_defaults(dataset_mode="single")
28
+ parser.add_argument("--model_suffix", type=str, default="", help="In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.")
29
+
30
+ return parser
31
+
32
+ def __init__(self, opt):
33
+ """Initialize the pix2pix class.
34
+
35
+ Parameters:
36
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
37
+ """
38
+ assert not opt.isTrain
39
+ BaseModel.__init__(self, opt)
40
+ # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
41
+ self.loss_names = []
42
+ # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
43
+ self.visual_names = ["real", "fake"]
44
+ # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>
45
+ self.model_names = ["G" + opt.model_suffix] # only generator is needed.
46
+ self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain)
47
+
48
+ # assigns the model to self.netG_[suffix] so that it can be loaded
49
+ # please see <BaseModel.load_networks>
50
+ setattr(self, "netG" + opt.model_suffix, self.netG) # store netG in self.
51
+
52
+ def set_input(self, input):
53
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
54
+
55
+ Parameters:
56
+ input: a dictionary that contains the data itself and its metadata information.
57
+
58
+ We need to use 'single_dataset' dataset mode. It only load images from one domain.
59
+ """
60
+ self.real = input["A"].to(self.device)
61
+ self.image_paths = input["A_paths"]
62
+
63
+ def forward(self):
64
+ """Run forward pass."""
65
+ self.fake = self.netG(self.real) # G(real)
66
+
67
+ def optimize_parameters(self):
68
+ """No optimization for test model."""
69
+ pass
options/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ """This package options includes option modules: training options, test options, and basic options (used in both training and test)."""
options/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (343 Bytes). View file
 
options/__pycache__/base_options.cpython-312.pyc ADDED
Binary file (9.96 kB). View file
 
options/__pycache__/test_options.cpython-312.pyc ADDED
Binary file (1.66 kB). View file
 
options/__pycache__/train_options.cpython-312.pyc ADDED
Binary file (3.57 kB). View file
 
options/base_options.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+ from util import util
4
+ import torch
5
+ import models
6
+ import data
7
+
8
+
9
+ class BaseOptions:
10
+ """This class defines options used during both training and test time.
11
+
12
+ It also implements several helper functions such as parsing, printing, and saving the options.
13
+ It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class.
14
+ """
15
+
16
+ def __init__(self):
17
+ """Reset the class; indicates the class hasn't been initailized"""
18
+ self.initialized = False
19
+
20
+ def initialize(self, parser):
21
+ """Define the common options that are used in both training and test."""
22
+ # basic parameters
23
+ parser.add_argument("--dataroot", required=True, help="path to images (should have subfolders trainA, trainB, valA, valB, etc)")
24
+ parser.add_argument("--name", type=str, default="experiment_name", help="name of the experiment. It decides where to store samples and models")
25
+ parser.add_argument("--checkpoints_dir", type=str, default="./checkpoints", help="models are saved here")
26
+ # model parameters
27
+ parser.add_argument("--model", type=str, default="cycle_gan", help="chooses which model to use. [cycle_gan | pix2pix | test | colorization]")
28
+ parser.add_argument("--input_nc", type=int, default=3, help="# of input image channels: 3 for RGB and 1 for grayscale")
29
+ parser.add_argument("--output_nc", type=int, default=3, help="# of output image channels: 3 for RGB and 1 for grayscale")
30
+ parser.add_argument("--ngf", type=int, default=64, help="# of gen filters in the last conv layer")
31
+ parser.add_argument("--ndf", type=int, default=64, help="# of discrim filters in the first conv layer")
32
+ parser.add_argument("--netD", type=str, default="basic", help="specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator")
33
+ parser.add_argument("--netG", type=str, default="resnet_9blocks", help="specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]")
34
+ parser.add_argument("--n_layers_D", type=int, default=3, help="only used if netD==n_layers")
35
+ parser.add_argument("--norm", type=str, default="instance", help="instance normalization or batch normalization [instance | batch | none | syncbatch]")
36
+ parser.add_argument("--init_type", type=str, default="normal", help="network initialization [normal | xavier | kaiming | orthogonal]")
37
+ parser.add_argument("--init_gain", type=float, default=0.02, help="scaling factor for normal, xavier and orthogonal.")
38
+ parser.add_argument("--no_dropout", action="store_true", help="no dropout for the generator")
39
+ # dataset parameters
40
+ parser.add_argument("--dataset_mode", type=str, default="unaligned", help="chooses how datasets are loaded. [unaligned | aligned | single | colorization]")
41
+ parser.add_argument("--direction", type=str, default="AtoB", help="AtoB or BtoA")
42
+ parser.add_argument("--serial_batches", action="store_true", help="if true, takes images in order to make batches, otherwise takes them randomly")
43
+ parser.add_argument("--num_threads", default=4, type=int, help="# threads for loading data")
44
+ parser.add_argument("--batch_size", type=int, default=1, help="input batch size")
45
+ parser.add_argument("--load_size", type=int, default=286, help="scale images to this size")
46
+ parser.add_argument("--crop_size", type=int, default=256, help="then crop to this size")
47
+ parser.add_argument("--max_dataset_size", type=int, default=float("inf"), help="Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.")
48
+ parser.add_argument("--preprocess", type=str, default="resize_and_crop", help="scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]")
49
+ parser.add_argument("--no_flip", action="store_true", help="if specified, do not flip the images for data augmentation")
50
+ parser.add_argument("--display_winsize", type=int, default=256, help="display window size for both visdom and HTML")
51
+ # additional parameters
52
+ parser.add_argument("--epoch", type=str, default="latest", help="which epoch to load? set to latest to use latest cached model")
53
+ parser.add_argument("--load_iter", type=int, default="0", help="which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]")
54
+ parser.add_argument("--verbose", action="store_true", help="if specified, print more debugging information")
55
+ parser.add_argument("--suffix", default="", type=str, help="customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}")
56
+ # wandb parameters
57
+ parser.add_argument("--use_wandb", action="store_true", help="if specified, then init wandb logging")
58
+ parser.add_argument("--wandb_project_name", type=str, default="CycleGAN-and-pix2pix", help="specify wandb project name")
59
+ self.initialized = True
60
+ return parser
61
+
62
+ def gather_options(self):
63
+ """Initialize our parser with basic options(only once).
64
+ Add additional model-specific and dataset-specific options.
65
+ These options are defined in the <modify_commandline_options> function
66
+ in model and dataset classes.
67
+ """
68
+ if not self.initialized: # check if it has been initialized
69
+ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
70
+ parser = self.initialize(parser)
71
+
72
+ # get the basic options
73
+ opt, _ = parser.parse_known_args()
74
+
75
+ # modify model-related parser options
76
+ model_name = opt.model
77
+ model_option_setter = models.get_option_setter(model_name)
78
+ parser = model_option_setter(parser, self.isTrain)
79
+ opt, _ = parser.parse_known_args() # parse again with new defaults
80
+
81
+ # modify dataset-related parser options
82
+ dataset_name = opt.dataset_mode
83
+ dataset_option_setter = data.get_option_setter(dataset_name)
84
+ parser = dataset_option_setter(parser, self.isTrain)
85
+
86
+ # save and return the parser
87
+ self.parser = parser
88
+ return parser.parse_args()
89
+
90
+ def print_options(self, opt):
91
+ """Print and save options
92
+
93
+ It will print both current options and default values(if different).
94
+ It will save options into a text file / [checkpoints_dir] / opt.txt
95
+ """
96
+ message = ""
97
+ message += "----------------- Options ---------------\n"
98
+ for k, v in sorted(vars(opt).items()):
99
+ comment = ""
100
+ default = self.parser.get_default(k)
101
+ if v != default:
102
+ comment = "\t[default: %s]" % str(default)
103
+ message += "{:>25}: {:<30}{}\n".format(str(k), str(v), comment)
104
+ message += "----------------- End -------------------"
105
+ print(message)
106
+
107
+ # save to the disk
108
+ expr_dir = Path(opt.checkpoints_dir) / opt.name
109
+ util.mkdirs(expr_dir)
110
+ file_name = expr_dir / f"{opt.phase}_opt.txt"
111
+ with open(file_name, "wt") as opt_file:
112
+ opt_file.write(message)
113
+ opt_file.write("\n")
114
+
115
+ def parse(self):
116
+ """Parse our options, create checkpoints directory suffix, and set up gpu device."""
117
+ opt = self.gather_options()
118
+ opt.isTrain = self.isTrain # train or test
119
+
120
+ # process opt.suffix
121
+ if opt.suffix:
122
+ suffix = ("_" + opt.suffix.format(**vars(opt))) if opt.suffix != "" else ""
123
+ opt.name = opt.name + suffix
124
+
125
+ self.print_options(opt)
126
+ self.opt = opt
127
+ return self.opt
options/test_options.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base_options import BaseOptions
2
+
3
+
4
+ class TestOptions(BaseOptions):
5
+ """This class includes test options.
6
+
7
+ It also includes shared options defined in BaseOptions.
8
+ """
9
+
10
+ def initialize(self, parser):
11
+ parser = BaseOptions.initialize(self, parser) # define shared options
12
+ parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.')
13
+ parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images')
14
+ parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc')
15
+ # Dropout and Batchnorm has different behavioir during training and test.
16
+ parser.add_argument('--eval', action='store_true', help='use eval mode during test time.')
17
+ parser.add_argument('--num_test', type=int, default=50, help='how many test images to run')
18
+ # rewrite devalue values
19
+ parser.set_defaults(model='test')
20
+ # To avoid cropping, the load_size should be the same as crop_size
21
+ parser.set_defaults(load_size=parser.get_default('crop_size'))
22
+ self.isTrain = False
23
+ return parser
options/train_options.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base_options import BaseOptions
2
+
3
+
4
+ class TrainOptions(BaseOptions):
5
+ """This class includes training options.
6
+
7
+ It also includes shared options defined in BaseOptions.
8
+ """
9
+
10
+ def initialize(self, parser):
11
+ parser = BaseOptions.initialize(self, parser)
12
+ # HTML visualization parameters
13
+ parser.add_argument('--display_freq', type=int, default=400, help='frequency of showing training results on screen')
14
+ parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html')
15
+ parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console')
16
+ parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/')
17
+ # network saving and loading parameters
18
+ parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results')
19
+ parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs')
20
+ parser.add_argument('--save_by_iter', action='store_true', help='whether saves model by iteration')
21
+ parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model')
22
+ parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...')
23
+ parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc')
24
+ # training parameters
25
+ parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs with the initial learning rate')
26
+ parser.add_argument('--n_epochs_decay', type=int, default=100, help='number of epochs to linearly decay learning rate to zero')
27
+ parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam')
28
+ parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
29
+ parser.add_argument('--gan_mode', type=str, default='lsgan', help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.')
30
+ parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images')
31
+ parser.add_argument('--lr_policy', type=str, default='linear', help='learning rate policy. [linear | step | plateau | cosine]')
32
+ parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations')
33
+
34
+ self.isTrain = True
35
+ return parser
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # requirements.txt
2
+
3
+ gradio
4
+ numpy
5
+ opencv-python
6
+ pillow
7
+ torch
8
+ torchvision
util/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ """This package includes a miscellaneous collection of useful helper functions."""
util/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (284 Bytes). View file
 
util/__pycache__/html.cpython-312.pyc ADDED
Binary file (5.5 kB). View file
 
util/__pycache__/image_pool.cpython-312.pyc ADDED
Binary file (2.6 kB). View file
 
util/__pycache__/util.cpython-312.pyc ADDED
Binary file (6.41 kB). View file
 
util/__pycache__/visualizer.cpython-312.pyc ADDED
Binary file (10.1 kB). View file
 
util/get_data.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ from pathlib import Path
3
+ import tarfile
4
+ import requests
5
+ from warnings import warn
6
+ from zipfile import ZipFile
7
+ from bs4 import BeautifulSoup
8
+
9
+
10
+ class GetData(object):
11
+ """A Python script for downloading CycleGAN or pix2pix datasets.
12
+
13
+ Parameters:
14
+ technique (str) -- One of: 'cyclegan' or 'pix2pix'.
15
+ verbose (bool) -- If True, print additional information.
16
+
17
+ Examples:
18
+ >>> from util.get_data import GetData
19
+ >>> gd = GetData(technique='cyclegan')
20
+ >>> new_data_path = gd.get(save_path='./datasets') # options will be displayed.
21
+
22
+ Alternatively, You can use bash scripts: 'scripts/download_pix2pix_model.sh'
23
+ and 'scripts/download_cyclegan_model.sh'.
24
+ """
25
+
26
+ def __init__(self, technique="cyclegan", verbose=True):
27
+ url_dict = {
28
+ "pix2pix": "http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/",
29
+ "cyclegan": "http://efrosgans.eecs.berkeley.edu/pix2pix/datasets",
30
+ }
31
+ self.url = url_dict.get(technique.lower())
32
+ self._verbose = verbose
33
+
34
+ def _print(self, text):
35
+ if self._verbose:
36
+ print(text)
37
+
38
+ @staticmethod
39
+ def _get_options(r):
40
+ soup = BeautifulSoup(r.text, "lxml")
41
+ options = [h.text for h in soup.find_all("a", href=True) if h.text.endswith((".zip", "tar.gz"))]
42
+ return options
43
+
44
+ def _present_options(self):
45
+ r = requests.get(self.url)
46
+ options = self._get_options(r)
47
+ print("Options:\n")
48
+ for i, o in enumerate(options):
49
+ print("{0}: {1}".format(i, o))
50
+ choice = input("\nPlease enter the number of the " "dataset above you wish to download:")
51
+ return options[int(choice)]
52
+
53
+ def _download_data(self, dataset_url, save_path):
54
+ save_path = Path(save_path)
55
+ if not save_path.is_dir():
56
+ save_path.mkdir(parents=True, exist_ok=True)
57
+
58
+ base = Path(dataset_url).name
59
+ temp_save_path = save_path / base
60
+
61
+ with open(temp_save_path, "wb") as f:
62
+ r = requests.get(dataset_url)
63
+ f.write(r.content)
64
+
65
+ if base.endswith(".tar.gz"):
66
+ obj = tarfile.open(temp_save_path)
67
+ elif base.endswith(".zip"):
68
+ obj = ZipFile(temp_save_path, "r")
69
+ else:
70
+ raise ValueError("Unknown File Type: {0}.".format(base))
71
+
72
+ self._print("Unpacking Data...")
73
+ obj.extractall(save_path)
74
+ obj.close()
75
+ temp_save_path.unlink()
76
+
77
+ def get(self, save_path, dataset=None):
78
+ """
79
+
80
+ Download a dataset.
81
+
82
+ Parameters:
83
+ save_path (str) -- A directory to save the data to.
84
+ dataset (str) -- (optional). A specific dataset to download.
85
+ Note: this must include the file extension.
86
+ If None, options will be presented for you
87
+ to choose from.
88
+
89
+ Returns:
90
+ save_path_full (str) -- the absolute path to the downloaded data.
91
+
92
+ """
93
+ if dataset is None:
94
+ selected_dataset = self._present_options()
95
+ else:
96
+ selected_dataset = dataset
97
+
98
+ save_path_full = Path(save_path) / selected_dataset.split(".")[0]
99
+
100
+ if save_path_full.is_dir():
101
+ warn(f"\n'{save_path_full}' already exists. Voiding Download.")
102
+ else:
103
+ self._print("Downloading Data...")
104
+ url = f"{self.url}/{selected_dataset}"
105
+ self._download_data(url, save_path=save_path)
106
+
107
+ return save_path_full.resolve()
util/html.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dominate
2
+ from dominate.tags import meta, h3, table, tr, td, p, a, img, br
3
+ from pathlib import Path
4
+
5
+
6
+ class HTML:
7
+ """This HTML class allows us to save images and write texts into a single HTML file.
8
+
9
+ It consists of functions such as <add_header> (add a text header to the HTML file),
10
+ <add_images> (add a row of images to the HTML file), and <save> (save the HTML to the disk).
11
+ It is based on Python library 'dominate', a Python library for creating and manipulating HTML documents using a DOM API.
12
+ """
13
+
14
+ def __init__(self, web_dir, title, refresh=0):
15
+ """Initialize the HTML classes
16
+
17
+ Parameters:
18
+ web_dir (str) -- a directory that stores the webpage. HTML file will be created at <web_dir>/index.html; images will be saved at <web_dir/images/
19
+ title (str) -- the webpage name
20
+ refresh (int) -- how often the website refresh itself; if 0; no refreshing
21
+ """
22
+ self.title = title
23
+ self.web_dir = Path(web_dir)
24
+ self.img_dir = self.web_dir / "images"
25
+
26
+ self.web_dir.mkdir(parents=True, exist_ok=True)
27
+ self.img_dir.mkdir(parents=True, exist_ok=True)
28
+
29
+ self.doc = dominate.document(title=title)
30
+ if refresh > 0:
31
+ with self.doc.head:
32
+ meta(http_equiv="refresh", content=str(refresh))
33
+
34
+ def get_image_dir(self):
35
+ """Return the directory that stores images"""
36
+ return self.img_dir
37
+
38
+ def add_header(self, text):
39
+ """Insert a header to the HTML file
40
+
41
+ Parameters:
42
+ text (str) -- the header text
43
+ """
44
+ with self.doc:
45
+ h3(text)
46
+
47
+ def add_images(self, ims, txts, links, width=400):
48
+ """add images to the HTML file
49
+
50
+ Parameters:
51
+ ims (str list) -- a list of image paths
52
+ txts (str list) -- a list of image names shown on the website
53
+ links (str list) -- a list of hyperref links; when you click an image, it will redirect you to a new page
54
+ """
55
+ self.t = table(border=1, style="table-layout: fixed;") # Insert a table
56
+ self.doc.add(self.t)
57
+ with self.t:
58
+ with tr():
59
+ for im, txt, link in zip(ims, txts, links):
60
+ with td(style="word-wrap: break-word;", halign="center", valign="top"):
61
+ with p():
62
+ with a(href=Path("images") / link):
63
+ img(style=f"width:{width}px", src=Path("images") / im)
64
+ br()
65
+ p(txt)
66
+
67
+ def save(self):
68
+ """save the current content to the HMTL file"""
69
+ html_file = self.web_dir / "index.html"
70
+ with open(html_file, "wt") as f:
71
+ f.write(self.doc.render())
72
+
73
+
74
+ if __name__ == "__main__": # we show an example usage here.
75
+ html = HTML("web/", "test_html")
76
+ html.add_header("hello world")
77
+
78
+ ims, txts, links = [], [], []
79
+ for n in range(4):
80
+ ims.append(f"image_{n}.png")
81
+ txts.append(f"text_{n}")
82
+ links.append(f"image_{n}.png")
83
+ html.add_images(ims, txts, links)
84
+ html.save()
util/image_pool.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import torch
3
+
4
+
5
+ class ImagePool:
6
+ """This class implements an image buffer that stores previously generated images.
7
+
8
+ This buffer enables us to update discriminators using a history of generated images
9
+ rather than the ones produced by the latest generators.
10
+ """
11
+
12
+ def __init__(self, pool_size):
13
+ """Initialize the ImagePool class
14
+
15
+ Parameters:
16
+ pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created
17
+ """
18
+ self.pool_size = pool_size
19
+ if self.pool_size > 0: # create an empty pool
20
+ self.num_imgs = 0
21
+ self.images = []
22
+
23
+ def query(self, images):
24
+ """Return an image from the pool.
25
+
26
+ Parameters:
27
+ images: the latest generated images from the generator
28
+
29
+ Returns images from the buffer.
30
+
31
+ By 50/100, the buffer will return input images.
32
+ By 50/100, the buffer will return images previously stored in the buffer,
33
+ and insert the current images to the buffer.
34
+ """
35
+ if self.pool_size == 0: # if the buffer size is 0, do nothing
36
+ return images
37
+ return_images = []
38
+ for image in images:
39
+ image = torch.unsqueeze(image.data, 0)
40
+ if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer
41
+ self.num_imgs = self.num_imgs + 1
42
+ self.images.append(image)
43
+ return_images.append(image)
44
+ else:
45
+ p = random.uniform(0, 1)
46
+ if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer
47
+ random_id = random.randint(0, self.pool_size - 1) # randint is inclusive
48
+ tmp = self.images[random_id].clone()
49
+ self.images[random_id] = image
50
+ return_images.append(tmp)
51
+ else: # by another 50% chance, the buffer will return the current image
52
+ return_images.append(image)
53
+ return_images = torch.cat(return_images, 0) # collect all the images and return
54
+ return return_images
util/util.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This module contains simple helper functions"""
2
+
3
+ from __future__ import print_function
4
+ import torch
5
+ import numpy as np
6
+ from PIL import Image
7
+ from pathlib import Path
8
+ import torch.distributed as dist
9
+ import os
10
+
11
+
12
+ def tensor2im(input_image, imtype=np.uint8):
13
+ """ "Converts a Tensor array into a numpy image array.
14
+
15
+ Parameters:
16
+ input_image (tensor) -- the input image tensor array
17
+ imtype (type) -- the desired type of the converted numpy array
18
+ """
19
+ if not isinstance(input_image, np.ndarray):
20
+ if isinstance(input_image, torch.Tensor): # get the data from a variable
21
+ image_tensor = input_image.data
22
+ else:
23
+ return input_image
24
+ image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array
25
+ if image_numpy.shape[0] == 1: # grayscale to RGB
26
+ image_numpy = np.tile(image_numpy, (3, 1, 1))
27
+ image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling
28
+ else: # if it is a numpy array, do nothing
29
+ image_numpy = input_image
30
+ return image_numpy.astype(imtype)
31
+
32
+
33
+ def diagnose_network(net, name="network"):
34
+ """Calculate and print the mean of average absolute(gradients)
35
+
36
+ Parameters:
37
+ net (torch network) -- Torch network
38
+ name (str) -- the name of the network
39
+ """
40
+ mean = 0.0
41
+ count = 0
42
+ for param in net.parameters():
43
+ if param.grad is not None:
44
+ mean += torch.mean(torch.abs(param.grad.data))
45
+ count += 1
46
+ if count > 0:
47
+ mean = mean / count
48
+ print(name)
49
+ print(mean)
50
+
51
+
52
+ # initialize ddp
53
+ def init_ddp():
54
+ # Initialize DDP if LOCAL_RANK is set
55
+ is_ddp = "WORLD_SIZE" in os.environ and int(os.environ["WORLD_SIZE"]) > 1
56
+
57
+ if is_ddp:
58
+ if not dist.is_initialized():
59
+ dist.init_process_group(backend="nccl")
60
+ local_rank = int(os.environ["LOCAL_RANK"])
61
+ device = torch.device(f"cuda:{local_rank}")
62
+ torch.cuda.set_device(local_rank)
63
+ elif torch.cuda.is_available():
64
+ device = torch.device("cuda:0")
65
+ torch.cuda.set_device(0)
66
+ else:
67
+ device = torch.device("cpu")
68
+ print(f"Initialized with device {device}")
69
+ return device
70
+
71
+
72
+ # cleanup ddp
73
+ def cleanup_ddp():
74
+ if dist.is_initialized():
75
+ dist.destroy_process_group()
76
+
77
+
78
+ def save_image(image_numpy, image_path, aspect_ratio=1.0):
79
+ """Save a numpy image to the disk
80
+
81
+ Parameters:
82
+ image_numpy (numpy array) -- input numpy array
83
+ image_path (str) -- the path of the image
84
+ """
85
+
86
+ image_pil = Image.fromarray(image_numpy)
87
+ h, w, _ = image_numpy.shape
88
+
89
+ if aspect_ratio > 1.0:
90
+ image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
91
+ if aspect_ratio < 1.0:
92
+ image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
93
+ image_pil.save(image_path)
94
+
95
+
96
+ def print_numpy(x, val=True, shp=False):
97
+ """Print the mean, min, max, median, std, and size of a numpy array
98
+
99
+ Parameters:
100
+ val (bool) -- if print the values of the numpy array
101
+ shp (bool) -- if print the shape of the numpy array
102
+ """
103
+ x = x.astype(np.float64)
104
+ if shp:
105
+ print("shape,", x.shape)
106
+ if val:
107
+ x = x.flatten()
108
+ print("mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f" % (np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
109
+
110
+
111
+ def mkdirs(paths):
112
+ """create empty directories if they don't exist
113
+
114
+ Parameters:
115
+ paths (str list) -- a list of directory paths
116
+ """
117
+ if isinstance(paths, list) and not isinstance(paths, str):
118
+ for path in paths:
119
+ mkdir(path)
120
+ else:
121
+ mkdir(paths)
122
+
123
+
124
+ def mkdir(path):
125
+ """create a single empty directory if it didn't exist
126
+
127
+ Parameters:
128
+ path (str) -- a single directory path
129
+ """
130
+ Path(path).mkdir(parents=True, exist_ok=True)