muhammadhamza-stack
commited on
Commit
·
9644ee8
1
Parent(s):
c6c8bf8
refine the gradio app
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- app.py +202 -18
- licence.jpg +3 -0
- licence2.jpg +3 -0
- requirements.txt +4 -2
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
venv
|
app.py
CHANGED
|
@@ -1,21 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
from PIL import Image, ImageEnhance
|
| 4 |
from ultralytics import YOLO
|
| 5 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Load YOLO model
|
|
|
|
| 8 |
model_path = "./best.pt"
|
| 9 |
-
|
| 10 |
-
modelY
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Preprocessing function
|
| 13 |
def preprocessing(image):
|
| 14 |
if image.mode != 'RGB':
|
| 15 |
image = image.convert('RGB')
|
|
|
|
|
|
|
| 16 |
image = ImageEnhance.Sharpness(image).enhance(2.0)
|
| 17 |
image = ImageEnhance.Contrast(image).enhance(1.5)
|
| 18 |
image = ImageEnhance.Brightness(image).enhance(0.8)
|
|
|
|
|
|
|
| 19 |
width = 448
|
| 20 |
aspect_ratio = image.height / image.width
|
| 21 |
height = int(width * aspect_ratio)
|
|
@@ -23,53 +158,102 @@ def preprocessing(image):
|
|
| 23 |
|
| 24 |
# YOLO document detection and cropping
|
| 25 |
def detect_and_crop_document(image):
|
|
|
|
|
|
|
|
|
|
| 26 |
image_np = np.array(image)
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
cropped_images = []
|
| 29 |
predictions = []
|
| 30 |
|
| 31 |
for result in results:
|
| 32 |
for box in result.boxes:
|
| 33 |
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 34 |
-
conf = int(box.conf[0] * 100)
|
| 35 |
-
cls = int(box.cls[0])
|
| 36 |
-
class_name = modelY.names
|
|
|
|
| 37 |
cropped_image_np = image_np[y1:y2, x1:x2]
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
if not cropped_images:
|
| 43 |
-
return None, "No document detected"
|
| 44 |
return cropped_images, predictions
|
| 45 |
|
| 46 |
-
# Gradio interface
|
| 47 |
def process_image(image):
|
|
|
|
|
|
|
|
|
|
| 48 |
preprocessed_image = preprocessing(image)
|
| 49 |
cropped_images, predictions = detect_and_crop_document(preprocessed_image)
|
| 50 |
|
| 51 |
if cropped_images:
|
| 52 |
return cropped_images, '\n'.join(predictions)
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
with gr.Blocks(css=".gr-button {background-color: #4caf50; color: white; font-size: 16px; padding: 10px 20px; border-radius: 8px;}") as demo:
|
|
|
|
| 56 |
gr.Markdown(
|
| 57 |
"""
|
| 58 |
-
<h1 style="
|
| 59 |
-
<p style="
|
| 60 |
"""
|
| 61 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
with gr.Row():
|
| 63 |
with gr.Column(scale=1, min_width=300):
|
| 64 |
input_image = gr.Image(type="pil", label="Upload License Image", interactive=True)
|
| 65 |
with gr.Row():
|
| 66 |
clear_btn = gr.Button("Clear")
|
| 67 |
submit_btn = gr.Button("Detect Document")
|
|
|
|
| 68 |
with gr.Column(scale=2):
|
| 69 |
-
output_image = gr.Gallery(label="Cropped Documents", interactive=False)
|
| 70 |
-
output_text = gr.Textbox(label="Detection Result", interactive=False)
|
| 71 |
|
| 72 |
submit_btn.click(process_image, inputs=input_image, outputs=[output_image, output_text])
|
| 73 |
-
clear_btn.click(lambda: (None, ""), outputs=[output_image, output_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
|
|
|
| 75 |
demo.launch()
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# import numpy as np
|
| 3 |
+
# from PIL import Image, ImageEnhance
|
| 4 |
+
# from ultralytics import YOLO
|
| 5 |
+
# import cv2
|
| 6 |
+
|
| 7 |
+
# # Load YOLO model
|
| 8 |
+
# model_path = "./best.pt"
|
| 9 |
+
# modelY = YOLO(model_path)
|
| 10 |
+
# modelY.to('cpu')
|
| 11 |
+
|
| 12 |
+
# # Preprocessing function
|
| 13 |
+
# def preprocessing(image):
|
| 14 |
+
# if image.mode != 'RGB':
|
| 15 |
+
# image = image.convert('RGB')
|
| 16 |
+
# image = ImageEnhance.Sharpness(image).enhance(2.0)
|
| 17 |
+
# image = ImageEnhance.Contrast(image).enhance(1.5)
|
| 18 |
+
# image = ImageEnhance.Brightness(image).enhance(0.8)
|
| 19 |
+
# width = 448
|
| 20 |
+
# aspect_ratio = image.height / image.width
|
| 21 |
+
# height = int(width * aspect_ratio)
|
| 22 |
+
# return image.resize((width, height))
|
| 23 |
+
|
| 24 |
+
# # YOLO document detection and cropping
|
| 25 |
+
# def detect_and_crop_document(image):
|
| 26 |
+
# image_np = np.array(image)
|
| 27 |
+
# results = modelY(image_np, conf=0.80, device='cpu')
|
| 28 |
+
# cropped_images = []
|
| 29 |
+
# predictions = []
|
| 30 |
+
|
| 31 |
+
# for result in results:
|
| 32 |
+
# for box in result.boxes:
|
| 33 |
+
# x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 34 |
+
# conf = int(box.conf[0] * 100) # Convert confidence to percentage
|
| 35 |
+
# cls = int(box.cls[0])
|
| 36 |
+
# class_name = modelY.names[cls].capitalize() # Capitalize class names
|
| 37 |
+
# cropped_image_np = image_np[y1:y2, x1:x2]
|
| 38 |
+
# cropped_image = Image.fromarray(cropped_image_np)
|
| 39 |
+
# cropped_images.append(cropped_image)
|
| 40 |
+
# predictions.append(f"Detected: STNK {class_name} -- (Confidence: {conf}%)")
|
| 41 |
+
|
| 42 |
+
# if not cropped_images:
|
| 43 |
+
# return None, "No document detected"
|
| 44 |
+
# return cropped_images, predictions
|
| 45 |
+
|
| 46 |
+
# # Gradio interface
|
| 47 |
+
# def process_image(image):
|
| 48 |
+
# preprocessed_image = preprocessing(image)
|
| 49 |
+
# cropped_images, predictions = detect_and_crop_document(preprocessed_image)
|
| 50 |
+
|
| 51 |
+
# if cropped_images:
|
| 52 |
+
# return cropped_images, '\n'.join(predictions)
|
| 53 |
+
# return None, "No document detected"
|
| 54 |
+
|
| 55 |
+
# with gr.Blocks(css=".gr-button {background-color: #4caf50; color: white; font-size: 16px; padding: 10px 20px; border-radius: 8px;}") as demo:
|
| 56 |
+
# gr.Markdown(
|
| 57 |
+
# """
|
| 58 |
+
# <h1 style="text-align: center; color: #4caf50;">📜 License Registration Classification</h1>
|
| 59 |
+
# <p style="text-align: center; font-size: 18px;">Upload an image and let the YOLO model detect and crop license documents automatically.</p>
|
| 60 |
+
# """
|
| 61 |
+
# )
|
| 62 |
+
# with gr.Row():
|
| 63 |
+
# with gr.Column(scale=1, min_width=300):
|
| 64 |
+
# input_image = gr.Image(type="pil", label="Upload License Image", interactive=True)
|
| 65 |
+
# with gr.Row():
|
| 66 |
+
# clear_btn = gr.Button("Clear")
|
| 67 |
+
# submit_btn = gr.Button("Detect Document")
|
| 68 |
+
# with gr.Column(scale=2):
|
| 69 |
+
# output_image = gr.Gallery(label="Cropped Documents", interactive=False)
|
| 70 |
+
# output_text = gr.Textbox(label="Detection Result", interactive=False)
|
| 71 |
+
|
| 72 |
+
# submit_btn.click(process_image, inputs=input_image, outputs=[output_image, output_text])
|
| 73 |
+
# clear_btn.click(lambda: (None, ""), outputs=[output_image, output_text])
|
| 74 |
+
|
| 75 |
+
# demo.launch()
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
import gradio as gr
|
| 81 |
import numpy as np
|
| 82 |
from PIL import Image, ImageEnhance
|
| 83 |
from ultralytics import YOLO
|
| 84 |
import cv2
|
| 85 |
+
import os
|
| 86 |
+
|
| 87 |
+
# --- DOCUMENTATION STRINGS (English Only) ---
|
| 88 |
+
|
| 89 |
+
GUIDELINE_SETUP = """
|
| 90 |
+
## 1. Quick Start Guide: Setup and Run Instructions
|
| 91 |
+
|
| 92 |
+
This application uses a YOLO model to automatically detect, classify, and extract specific license registration documents (STNK).
|
| 93 |
+
|
| 94 |
+
1. **Preparation:** Ensure your image clearly shows the target license document.
|
| 95 |
+
2. **Upload:** Click the 'Upload License Image' box and select your image (JPG, PNG).
|
| 96 |
+
3. **Run:** Click the **"Detect Document"** button.
|
| 97 |
+
4. **Review:** The detected documents will appear in the 'Cropped Documents' gallery, and the 'Detection Result' box will show the classification and confidence score.
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
GUIDELINE_INPUT = """
|
| 101 |
+
## 2. Expected Inputs and Preprocessing
|
| 102 |
+
|
| 103 |
+
| Input Field | Purpose | Requirement |
|
| 104 |
+
| :--- | :--- | :--- |
|
| 105 |
+
| **Upload License Image** | The image containing the license document you want to detect and classify. | Must be an image file (e.g., JPG, PNG). |
|
| 106 |
+
|
| 107 |
+
### Automatic Preprocessing Steps:
|
| 108 |
+
Before detection, the input image is automatically adjusted to enhance accuracy:
|
| 109 |
+
1. **Sharpness:** Increased sharpness by 2.0.
|
| 110 |
+
2. **Contrast:** Increased contrast by 1.5.
|
| 111 |
+
3. **Brightness:** Slightly reduced brightness by 0.8.
|
| 112 |
+
4. **Resizing:** The image is resized to a width of 448 pixels while maintaining its original aspect ratio.
|
| 113 |
+
"""
|
| 114 |
+
|
| 115 |
+
GUIDELINE_OUTPUT = """
|
| 116 |
+
## 3. Expected Outputs (Detection and Classification)
|
| 117 |
+
|
| 118 |
+
The application produces two outputs based on a successful detection:
|
| 119 |
+
|
| 120 |
+
1. **Cropped Documents (Gallery):**
|
| 121 |
+
* This gallery displays only the regions of the image where a license document was confidently detected (Confidence > 80%).
|
| 122 |
+
* If multiple documents are found, all cropped images will appear here.
|
| 123 |
+
|
| 124 |
+
2. **Detection Result (Textbox):**
|
| 125 |
+
* A text summary listing each detected document, including its specific class name (e.g., 'STNK Class A'), and the model's confidence level (as a percentage).
|
| 126 |
+
|
| 127 |
+
### Failure Modes:
|
| 128 |
+
* If "No document detected" is returned, it means the model did not find a document with a confidence level of 80% or higher, or the image quality was too poor for detection.
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
# --- CORE LOGIC ---
|
| 132 |
|
| 133 |
# Load YOLO model
|
| 134 |
+
# NOTE: Ensure 'best.pt' is available in the execution directory.
|
| 135 |
model_path = "./best.pt"
|
| 136 |
+
try:
|
| 137 |
+
modelY = YOLO(model_path)
|
| 138 |
+
modelY.to('cpu')
|
| 139 |
+
except Exception as e:
|
| 140 |
+
print(f"Error loading model: {e}")
|
| 141 |
+
modelY = None
|
| 142 |
|
| 143 |
# Preprocessing function
|
| 144 |
def preprocessing(image):
|
| 145 |
if image.mode != 'RGB':
|
| 146 |
image = image.convert('RGB')
|
| 147 |
+
|
| 148 |
+
# Enhancement steps
|
| 149 |
image = ImageEnhance.Sharpness(image).enhance(2.0)
|
| 150 |
image = ImageEnhance.Contrast(image).enhance(1.5)
|
| 151 |
image = ImageEnhance.Brightness(image).enhance(0.8)
|
| 152 |
+
|
| 153 |
+
# Resizing while preserving aspect ratio
|
| 154 |
width = 448
|
| 155 |
aspect_ratio = image.height / image.width
|
| 156 |
height = int(width * aspect_ratio)
|
|
|
|
| 158 |
|
| 159 |
# YOLO document detection and cropping
|
| 160 |
def detect_and_crop_document(image):
|
| 161 |
+
if modelY is None:
|
| 162 |
+
return [], ["Model not loaded."]
|
| 163 |
+
|
| 164 |
image_np = np.array(image)
|
| 165 |
+
# Run inference with confidence threshold 0.80
|
| 166 |
+
results = modelY(image_np, conf=0.80, device='cpu', verbose=False)
|
| 167 |
+
|
| 168 |
cropped_images = []
|
| 169 |
predictions = []
|
| 170 |
|
| 171 |
for result in results:
|
| 172 |
for box in result.boxes:
|
| 173 |
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 174 |
+
conf = int(box.conf[0].item() * 100) # Ensure conversion to scalar for item()
|
| 175 |
+
cls = int(box.cls[0].item())
|
| 176 |
+
class_name = modelY.names.get(cls, "Unknown").capitalize()
|
| 177 |
+
|
| 178 |
cropped_image_np = image_np[y1:y2, x1:x2]
|
| 179 |
+
|
| 180 |
+
# Check for valid crop size before converting to PIL
|
| 181 |
+
if cropped_image_np.size > 0:
|
| 182 |
+
cropped_image = Image.fromarray(cropped_image_np)
|
| 183 |
+
cropped_images.append(cropped_image)
|
| 184 |
+
predictions.append(f"Detected: STNK {class_name} -- (Confidence: {conf}%)")
|
| 185 |
|
|
|
|
|
|
|
| 186 |
return cropped_images, predictions
|
| 187 |
|
| 188 |
+
# Gradio interface function
|
| 189 |
def process_image(image):
|
| 190 |
+
if image is None:
|
| 191 |
+
raise gr.Error("Please upload an image.")
|
| 192 |
+
|
| 193 |
preprocessed_image = preprocessing(image)
|
| 194 |
cropped_images, predictions = detect_and_crop_document(preprocessed_image)
|
| 195 |
|
| 196 |
if cropped_images:
|
| 197 |
return cropped_images, '\n'.join(predictions)
|
| 198 |
+
|
| 199 |
+
# If no documents are detected with sufficient confidence
|
| 200 |
+
return [], "No document detected (Confidence threshold not met or image is unclear)."
|
| 201 |
+
|
| 202 |
+
# --- GRADIO UI SETUP ---
|
| 203 |
+
|
| 204 |
+
# Define example paths (NOTE: Replace with actual paths if needed)
|
| 205 |
+
examples = [
|
| 206 |
+
["./licence2.jpg"],
|
| 207 |
+
["./licence.jpg"],
|
| 208 |
+
]
|
| 209 |
|
| 210 |
with gr.Blocks(css=".gr-button {background-color: #4caf50; color: white; font-size: 16px; padding: 10px 20px; border-radius: 8px;}") as demo:
|
| 211 |
+
|
| 212 |
gr.Markdown(
|
| 213 |
"""
|
| 214 |
+
<h1 style="color: #4caf50;">License Registration Classification</h1>
|
| 215 |
+
<p style="font-size: 18px;">Upload an image and let the YOLO model detect and crop license documents automatically.</p>
|
| 216 |
"""
|
| 217 |
)
|
| 218 |
+
|
| 219 |
+
# 1. GUIDELINES SECTION
|
| 220 |
+
with gr.Accordion("User Guidelines and Documentation", open=False):
|
| 221 |
+
gr.Markdown(GUIDELINE_SETUP)
|
| 222 |
+
gr.Markdown("---")
|
| 223 |
+
gr.Markdown(GUIDELINE_INPUT)
|
| 224 |
+
gr.Markdown("---")
|
| 225 |
+
gr.Markdown(GUIDELINE_OUTPUT)
|
| 226 |
+
|
| 227 |
+
gr.Markdown("---")
|
| 228 |
+
|
| 229 |
+
# 2. APPLICATION INTERFACE
|
| 230 |
with gr.Row():
|
| 231 |
with gr.Column(scale=1, min_width=300):
|
| 232 |
input_image = gr.Image(type="pil", label="Upload License Image", interactive=True)
|
| 233 |
with gr.Row():
|
| 234 |
clear_btn = gr.Button("Clear")
|
| 235 |
submit_btn = gr.Button("Detect Document")
|
| 236 |
+
|
| 237 |
with gr.Column(scale=2):
|
| 238 |
+
output_image = gr.Gallery(label="Cropped Documents", interactive=False, object_fit="contain")
|
| 239 |
+
output_text = gr.Textbox(label="Detection Result", interactive=False, lines=5)
|
| 240 |
|
| 241 |
submit_btn.click(process_image, inputs=input_image, outputs=[output_image, output_text])
|
| 242 |
+
clear_btn.click(lambda: (None, ""), outputs=[output_image, output_text, input_image], show_progress=False)
|
| 243 |
+
|
| 244 |
+
gr.Markdown("---")
|
| 245 |
+
|
| 246 |
+
# 3. EXAMPLES SECTION
|
| 247 |
+
gr.Markdown("## Sample Data for Testing")
|
| 248 |
+
|
| 249 |
+
gr.Examples(
|
| 250 |
+
examples=examples,
|
| 251 |
+
inputs=input_image,
|
| 252 |
+
outputs=[output_image, output_text],
|
| 253 |
+
fn=process_image,
|
| 254 |
+
cache_examples=False,
|
| 255 |
+
label="Click to load and run a sample detection.",
|
| 256 |
+
)
|
| 257 |
|
| 258 |
+
demo.queue()
|
| 259 |
demo.launch()
|
licence.jpg
ADDED
|
Git LFS Details
|
licence2.jpg
ADDED
|
Git LFS Details
|
requirements.txt
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
-
gradio
|
| 2 |
ultralytics
|
| 3 |
pillow
|
| 4 |
numpy
|
| 5 |
opencv-python
|
| 6 |
-
torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
ultralytics
|
| 2 |
pillow
|
| 3 |
numpy
|
| 4 |
opencv-python
|
| 5 |
+
torch
|
| 6 |
+
numpy<2
|
| 7 |
+
gradio==3.50.2
|
| 8 |
+
gradio-client==0.6.1
|