Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- GMM.py +949 -0
- app_s_a_LiveCam.py +1157 -0
- requirements.txt +29 -0
- send_discord.py +172 -0
GMM.py
ADDED
|
@@ -0,0 +1,949 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2 as cv
|
| 3 |
+
import os
|
| 4 |
+
from numpy.linalg import norm, inv
|
| 5 |
+
from scipy.stats import multivariate_normal as mv_norm
|
| 6 |
+
import joblib # or import pickle
|
| 7 |
+
import os
|
| 8 |
+
import torch
|
| 9 |
+
from torch.distributions import MultivariateNormal
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
init_weight = [0.7, 0.11, 0.1, 0.09]
|
| 12 |
+
init_u = np.zeros(3)
|
| 13 |
+
# initial Covariance matrix
|
| 14 |
+
init_sigma = 225*np.eye(3)
|
| 15 |
+
init_alpha = 0.05
|
| 16 |
+
|
| 17 |
+
class GMM():
|
| 18 |
+
def __init__(self, data_dir, train_num, alpha=init_alpha):
|
| 19 |
+
self.data_dir = data_dir
|
| 20 |
+
self.train_num = train_num
|
| 21 |
+
self.alpha = alpha
|
| 22 |
+
self.img_shape = None
|
| 23 |
+
|
| 24 |
+
self.weight = None
|
| 25 |
+
self.mu = None
|
| 26 |
+
self.sigma = None
|
| 27 |
+
self.K = None
|
| 28 |
+
self.B = None
|
| 29 |
+
|
| 30 |
+
def check(self, pixel, mu, sigma):
|
| 31 |
+
'''
|
| 32 |
+
Check whether a pixel matches a Gaussian distribution.
|
| 33 |
+
Matching means the Mahalanobis distance is less than 2.5.
|
| 34 |
+
'''
|
| 35 |
+
# Convert to torch tensors on same device
|
| 36 |
+
if isinstance(mu, np.ndarray):
|
| 37 |
+
mu = torch.from_numpy(mu).float()
|
| 38 |
+
if isinstance(sigma, np.ndarray):
|
| 39 |
+
sigma = torch.from_numpy(sigma).float()
|
| 40 |
+
if isinstance(pixel, np.ndarray):
|
| 41 |
+
pixel = torch.from_numpy(pixel).float()
|
| 42 |
+
|
| 43 |
+
# Ensure all are on the same device
|
| 44 |
+
device = mu.device
|
| 45 |
+
pixel = pixel.to(device)
|
| 46 |
+
sigma = sigma.to(device)
|
| 47 |
+
|
| 48 |
+
# Compute Mahalanobis distance
|
| 49 |
+
delta = pixel - mu
|
| 50 |
+
sigma_inv = torch.linalg.inv(sigma)
|
| 51 |
+
d_squared = delta @ sigma_inv @ delta
|
| 52 |
+
d = torch.sqrt(d_squared + 1e-5)
|
| 53 |
+
|
| 54 |
+
return d.item() < 0.1
|
| 55 |
+
|
| 56 |
+
def rgba_to_rgb_for_processing(image_path):
|
| 57 |
+
img = cv.imread(image_path, cv.IMREAD_UNCHANGED)
|
| 58 |
+
|
| 59 |
+
if img.shape[2] == 4: # RGBA
|
| 60 |
+
# Create white background
|
| 61 |
+
rgb_img = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 255
|
| 62 |
+
|
| 63 |
+
# Alpha blending: blend with white background
|
| 64 |
+
alpha = img[:, :, 3:4] / 255.0
|
| 65 |
+
rgb_img = rgb_img * (1 - alpha) + img[:, :, :3] * alpha
|
| 66 |
+
|
| 67 |
+
return rgb_img.astype(np.uint8)
|
| 68 |
+
else:
|
| 69 |
+
return img
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def train(self, K=4):
|
| 73 |
+
'''
|
| 74 |
+
train model with GPU acceleration
|
| 75 |
+
'''
|
| 76 |
+
self.K = K
|
| 77 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 78 |
+
print(f"Using device: {device}")
|
| 79 |
+
|
| 80 |
+
file_list = []
|
| 81 |
+
for i in range(self.train_num):
|
| 82 |
+
file_name = os.path.join(self.data_dir, 'b%05d' % i + '.png')
|
| 83 |
+
file_list.append(file_name)
|
| 84 |
+
|
| 85 |
+
# Initialize with first image
|
| 86 |
+
img_init = cv.imread(file_list[0])
|
| 87 |
+
img_shape = img_shape = img_init.shape
|
| 88 |
+
self.img_shape = img_shape
|
| 89 |
+
height, width, channels = img_shape
|
| 90 |
+
|
| 91 |
+
# Initialize model parameters on GPU
|
| 92 |
+
self.weight = torch.full((height, width, K), 1.0/K,
|
| 93 |
+
dtype=torch.float32, device=device)
|
| 94 |
+
self.mu = torch.zeros(height, width, K, 3,
|
| 95 |
+
dtype=torch.float32, device=device)
|
| 96 |
+
self.sigma = torch.zeros(height, width, K, 3, 3,
|
| 97 |
+
dtype=torch.float32, device=device)
|
| 98 |
+
self.B = torch.ones((height, width),
|
| 99 |
+
dtype=torch.int32, device=device)
|
| 100 |
+
|
| 101 |
+
# Initialize mu with first image values
|
| 102 |
+
img_tensor = torch.from_numpy(img_init).float().to(device)
|
| 103 |
+
for k in range(K):
|
| 104 |
+
self.mu[:, :, k, :] = img_tensor
|
| 105 |
+
|
| 106 |
+
# Initialize sigma with identity matrix * 225
|
| 107 |
+
self.sigma[:] = torch.eye(3, device=device) * 225
|
| 108 |
+
|
| 109 |
+
# Training loop
|
| 110 |
+
for file in file_list:
|
| 111 |
+
print('training:{}'.format(file))
|
| 112 |
+
img = cv.imread(file)
|
| 113 |
+
img_tensor = torch.from_numpy(img).float().to(device) # (H,W,3)
|
| 114 |
+
|
| 115 |
+
# Check matches for all pixels
|
| 116 |
+
matches = torch.full((height, width), -1, dtype=torch.long, device=device)
|
| 117 |
+
|
| 118 |
+
for k in range(K):
|
| 119 |
+
# Calculate Mahalanobis distance for each distribution
|
| 120 |
+
delta = img_tensor.unsqueeze(2) - self.mu # (H,W,K,3)
|
| 121 |
+
sigma_inv = torch.linalg.inv(self.sigma) # (H,W,K,3,3)
|
| 122 |
+
|
| 123 |
+
# Compute (x-μ)T Σ^-1 (x-μ)
|
| 124 |
+
temp = torch.einsum('hwki,hwkij->hwkj', delta, sigma_inv)
|
| 125 |
+
mahalanobis = torch.sqrt(torch.einsum('hwki,hwki->hwk', temp, delta))
|
| 126 |
+
|
| 127 |
+
# Update matches where distance < 2.5 and not already matched
|
| 128 |
+
match_mask = (mahalanobis[:,:,k] < 2.5) & (matches == -1)
|
| 129 |
+
matches[match_mask] = k
|
| 130 |
+
|
| 131 |
+
# Process matched pixels
|
| 132 |
+
for k in range(K):
|
| 133 |
+
# Get mask for current distribution matches
|
| 134 |
+
mask = matches == k
|
| 135 |
+
if mask.any():
|
| 136 |
+
# Get matched pixels
|
| 137 |
+
matched_pixels = img_tensor[mask] # (N,3)
|
| 138 |
+
matched_mu = self.mu[:,:,k,:][mask] # (N,3)
|
| 139 |
+
matched_sigma = self.sigma[:,:,k,:,:][mask] # (N,3,3)
|
| 140 |
+
|
| 141 |
+
try:
|
| 142 |
+
# Create multivariate normal distribution
|
| 143 |
+
mvn = MultivariateNormal(matched_mu,
|
| 144 |
+
covariance_matrix=matched_sigma)
|
| 145 |
+
|
| 146 |
+
# Calculate rho
|
| 147 |
+
rho = self.alpha * torch.exp(mvn.log_prob(matched_pixels))
|
| 148 |
+
|
| 149 |
+
# Update weights
|
| 150 |
+
self.weight[:,:,k][mask] = (1 - self.alpha) * self.weight[:,:,k][mask] + self.alpha
|
| 151 |
+
|
| 152 |
+
# Update mu
|
| 153 |
+
delta = matched_pixels - matched_mu
|
| 154 |
+
self.mu[:,:,k,:][mask] += rho.unsqueeze(1) * delta
|
| 155 |
+
|
| 156 |
+
# Update sigma
|
| 157 |
+
delta_outer = torch.einsum('bi,bj->bij', delta, delta)
|
| 158 |
+
sigma_update = rho.unsqueeze(1).unsqueeze(2) * (delta_outer - matched_sigma)
|
| 159 |
+
self.sigma[:,:,k,:,:][mask] += sigma_update
|
| 160 |
+
|
| 161 |
+
except RuntimeError as e:
|
| 162 |
+
print(f"Error updating distribution {k}: {e}")
|
| 163 |
+
continue
|
| 164 |
+
|
| 165 |
+
# Process non-matched pixels
|
| 166 |
+
non_matched = matches == -1
|
| 167 |
+
if non_matched.any():
|
| 168 |
+
# Find least probable distribution for each non-matched pixel
|
| 169 |
+
weight_non_matched = self.weight[non_matched] # shape: (N, K)
|
| 170 |
+
min_weight_idx = torch.argmin(weight_non_matched, dim=1) # shape: (N,)
|
| 171 |
+
|
| 172 |
+
# Create flat indices of non-matched pixels
|
| 173 |
+
non_matched_indices = non_matched.nonzero(as_tuple=False) # shape: (N, 2)
|
| 174 |
+
|
| 175 |
+
for k in range(K):
|
| 176 |
+
# Find positions where min_weight_idx == k
|
| 177 |
+
k_mask = (min_weight_idx == k)
|
| 178 |
+
if k_mask.any():
|
| 179 |
+
selected_indices = non_matched_indices[k_mask] # shape: (M, 2)
|
| 180 |
+
y_idx = selected_indices[:, 0]
|
| 181 |
+
x_idx = selected_indices[:, 1]
|
| 182 |
+
|
| 183 |
+
# Update mu and sigma
|
| 184 |
+
self.mu[y_idx, x_idx, k, :] = img_tensor[y_idx, x_idx]
|
| 185 |
+
self.sigma[y_idx, x_idx, k, :, :] = torch.eye(3, device=device) * 225
|
| 186 |
+
|
| 187 |
+
# Convert to numpy for reordering and debug prints
|
| 188 |
+
weight_np = self.weight.cpu().numpy()
|
| 189 |
+
mu_np = self.mu.cpu().numpy()
|
| 190 |
+
sigma_np = self.sigma.cpu().numpy()
|
| 191 |
+
B_np = self.B.cpu().numpy()
|
| 192 |
+
|
| 193 |
+
print('img:{}'.format(img[100][100]))
|
| 194 |
+
print('weight:{}'.format(weight_np[100][100]))
|
| 195 |
+
|
| 196 |
+
# Update numpy arrays for reorder
|
| 197 |
+
self.weight = weight_np
|
| 198 |
+
self.mu = mu_np
|
| 199 |
+
self.sigma = sigma_np
|
| 200 |
+
self.B = B_np
|
| 201 |
+
|
| 202 |
+
self.reorder()
|
| 203 |
+
for i in range(self.K):
|
| 204 |
+
print('u:{}'.format(self.mu[100][100][i]))
|
| 205 |
+
|
| 206 |
+
# Move back to GPU for next iteration
|
| 207 |
+
self.weight = torch.from_numpy(self.weight).to(device)
|
| 208 |
+
self.mu = torch.from_numpy(self.mu).to(device)
|
| 209 |
+
self.sigma = torch.from_numpy(self.sigma).to(device)
|
| 210 |
+
self.B = torch.from_numpy(self.B).to(device)
|
| 211 |
+
|
| 212 |
+
def save_model(self, file_path):
|
| 213 |
+
"""
|
| 214 |
+
Save the trained model to a file
|
| 215 |
+
"""
|
| 216 |
+
# Only make directories if there is a directory in the path
|
| 217 |
+
dir_name = os.path.dirname(file_path)
|
| 218 |
+
if dir_name:
|
| 219 |
+
os.makedirs(dir_name, exist_ok=True)
|
| 220 |
+
|
| 221 |
+
joblib.dump({
|
| 222 |
+
'weight': self.weight,
|
| 223 |
+
'mu': self.mu,
|
| 224 |
+
'sigma': self.sigma,
|
| 225 |
+
'K': self.K,
|
| 226 |
+
'B': self.B,
|
| 227 |
+
'img_shape': self.img_shape,
|
| 228 |
+
'alpha': self.alpha,
|
| 229 |
+
'data_dir': self.data_dir,
|
| 230 |
+
'train_num': self.train_num
|
| 231 |
+
}, file_path)
|
| 232 |
+
|
| 233 |
+
print(f"Model saved to {file_path}")
|
| 234 |
+
|
| 235 |
+
@classmethod
|
| 236 |
+
def load_model(cls, file_path):
|
| 237 |
+
"""
|
| 238 |
+
Load a trained model from file
|
| 239 |
+
"""
|
| 240 |
+
data = joblib.load(file_path)
|
| 241 |
+
|
| 242 |
+
# Create new instance
|
| 243 |
+
gmm = cls(data['data_dir'], data['train_num'], data['alpha'])
|
| 244 |
+
|
| 245 |
+
# Restore all attributes
|
| 246 |
+
gmm.weight = data['weight']
|
| 247 |
+
gmm.mu = data['mu']
|
| 248 |
+
gmm.sigma = data['sigma']
|
| 249 |
+
gmm.K = data['K']
|
| 250 |
+
gmm.B = data['B']
|
| 251 |
+
gmm.img_shape = data['img_shape']
|
| 252 |
+
gmm.image_shape = data['img_shape']
|
| 253 |
+
|
| 254 |
+
print(f"Model loaded from {file_path}")
|
| 255 |
+
return gmm
|
| 256 |
+
# @classmethod
|
| 257 |
+
# def load_model(cls, file_path):
|
| 258 |
+
# """
|
| 259 |
+
# Load a trained model safely onto CPU, even if saved from GPU.
|
| 260 |
+
# """
|
| 261 |
+
# import pickle
|
| 262 |
+
|
| 263 |
+
# def cpu_load(path):
|
| 264 |
+
# with open(path, "rb") as f:
|
| 265 |
+
# unpickler = pickle._Unpickler(f)
|
| 266 |
+
# unpickler.persistent_load = lambda saved_id: torch.load(saved_id, map_location="cpu")
|
| 267 |
+
# return unpickler.load()
|
| 268 |
+
|
| 269 |
+
# # Force joblib to use pickle with CPU-mapped tensors
|
| 270 |
+
# data = cpu_load(file_path)
|
| 271 |
+
|
| 272 |
+
# # Create instance
|
| 273 |
+
# gmm = cls(data['data_dir'], data['train_num'], data['alpha'])
|
| 274 |
+
|
| 275 |
+
# Assign all attributes (already CPU tensors now)
|
| 276 |
+
gmm.weight = data['weight']
|
| 277 |
+
gmm.mu = data['mu']
|
| 278 |
+
gmm.sigma = data['sigma']
|
| 279 |
+
gmm.K = data['K']
|
| 280 |
+
gmm.B = data['B']
|
| 281 |
+
gmm.img_shape = data['img_shape']
|
| 282 |
+
gmm.image_shape = data['img_shape']
|
| 283 |
+
|
| 284 |
+
print(f"✅ GMM model loaded on CPU from {file_path}")
|
| 285 |
+
return gmm
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def reorder(self, T=0.90):
|
| 291 |
+
'''
|
| 292 |
+
Reorder the estimated components based on the ratio pi / the norm of standard deviation.
|
| 293 |
+
The first B components are chosen as background components.
|
| 294 |
+
The default threshold is 0.90.
|
| 295 |
+
'''
|
| 296 |
+
epsilon = 1e-6 # to prevent divide-by-zero
|
| 297 |
+
|
| 298 |
+
for i in range(self.img_shape[0]):
|
| 299 |
+
for j in range(self.img_shape[1]):
|
| 300 |
+
k_weight = self.weight[i][j]
|
| 301 |
+
k_norm = []
|
| 302 |
+
|
| 303 |
+
for k in range(self.K):
|
| 304 |
+
cov = self.sigma[i][j][k]
|
| 305 |
+
try:
|
| 306 |
+
if np.all(np.linalg.eigvals(cov) >= 0):
|
| 307 |
+
# stddev = np.sqrt(cov)
|
| 308 |
+
epsilon = 1e-6
|
| 309 |
+
stddev = np.sqrt(np.maximum(cov, epsilon))
|
| 310 |
+
k_norm.append(norm(stddev))
|
| 311 |
+
else:
|
| 312 |
+
k_norm.append(epsilon)
|
| 313 |
+
except:
|
| 314 |
+
k_norm.append(epsilon)
|
| 315 |
+
|
| 316 |
+
k_norm = np.array(k_norm)
|
| 317 |
+
ratio = k_weight / (k_norm + epsilon)
|
| 318 |
+
descending_order = np.argsort(-ratio)
|
| 319 |
+
|
| 320 |
+
self.weight[i][j] = self.weight[i][j][descending_order]
|
| 321 |
+
self.mu[i][j] = self.mu[i][j][descending_order]
|
| 322 |
+
self.sigma[i][j] = self.sigma[i][j][descending_order]
|
| 323 |
+
|
| 324 |
+
cum_weight = 0
|
| 325 |
+
for index, order in enumerate(descending_order):
|
| 326 |
+
cum_weight += self.weight[i][j][index]
|
| 327 |
+
if cum_weight > T:
|
| 328 |
+
self.B[i][j] = index + 1
|
| 329 |
+
break
|
| 330 |
+
from typing import Tuple, Optional
|
| 331 |
+
|
| 332 |
+
def region_propfill_enhancement(self, binary_mask: np.ndarray,
|
| 333 |
+
table_mask: Optional[np.ndarray] = None, # ADDED parameter
|
| 334 |
+
dilation_kernel_size: int = 5,
|
| 335 |
+
dilation_iterations: int = 2,
|
| 336 |
+
erosion_iterations: int = 1,
|
| 337 |
+
fill_threshold: int = 200,
|
| 338 |
+
min_contour_area: int = 50) -> Tuple[np.ndarray, np.ndarray]:
|
| 339 |
+
"""
|
| 340 |
+
Enhance GMM binary prediction mask using dilation and region filling.
|
| 341 |
+
|
| 342 |
+
Args:
|
| 343 |
+
binary_mask: Binary mask from GMM detection (True for detected foreground)
|
| 344 |
+
table_mask: Optional binary mask defining table area (restricts processing)
|
| 345 |
+
dilation_kernel_size: Size of dilation kernel (odd number)
|
| 346 |
+
dilation_iterations: Number of dilation iterations to connect fragments
|
| 347 |
+
erosion_iterations: Number of erosion iterations to restore original size
|
| 348 |
+
fill_threshold: Threshold for flood fill operation
|
| 349 |
+
min_contour_area: Minimum contour area to consider for processing
|
| 350 |
+
|
| 351 |
+
Returns:
|
| 352 |
+
enhanced_mask: Improved binary mask with filled regions
|
| 353 |
+
debug_info: Dictionary containing intermediate results for debugging
|
| 354 |
+
"""
|
| 355 |
+
|
| 356 |
+
# Convert boolean mask to uint8 if needed
|
| 357 |
+
if binary_mask.dtype == bool:
|
| 358 |
+
mask_uint8 = (binary_mask * 255).astype(np.uint8)
|
| 359 |
+
else:
|
| 360 |
+
mask_uint8 = binary_mask.astype(np.uint8)
|
| 361 |
+
|
| 362 |
+
# Apply table mask if provided - CRITICAL FIX
|
| 363 |
+
if table_mask is not None:
|
| 364 |
+
# Ensure table_mask matches dimensions
|
| 365 |
+
if table_mask.shape != mask_uint8.shape:
|
| 366 |
+
table_mask = cv.resize(table_mask.astype(np.uint8),
|
| 367 |
+
(mask_uint8.shape[1], mask_uint8.shape[0]),
|
| 368 |
+
interpolation=cv.INTER_NEAREST) > 0
|
| 369 |
+
# Zero out everything outside table area
|
| 370 |
+
mask_uint8[~table_mask] = 0
|
| 371 |
+
|
| 372 |
+
# Store original for comparison
|
| 373 |
+
original_mask = mask_uint8.copy()
|
| 374 |
+
|
| 375 |
+
# Step 1: Apply dilation to connect fragmented detections
|
| 376 |
+
kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE,
|
| 377 |
+
(dilation_kernel_size, dilation_kernel_size))
|
| 378 |
+
|
| 379 |
+
# Dilate to connect nearby fragments
|
| 380 |
+
dilated_mask = cv.dilate(mask_uint8, kernel, iterations=dilation_iterations)
|
| 381 |
+
|
| 382 |
+
# Step 2: Apply flood fill to fill internal holes
|
| 383 |
+
filled_mask = dilated_mask.copy()
|
| 384 |
+
h, w = filled_mask.shape
|
| 385 |
+
|
| 386 |
+
# Create flood fill mask (needs to be 2 pixels larger)
|
| 387 |
+
flood_mask = np.zeros((h + 2, w + 2), np.uint8)
|
| 388 |
+
|
| 389 |
+
# Find contours to identify individual objects
|
| 390 |
+
contours, _ = cv.findContours(dilated_mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
|
| 391 |
+
|
| 392 |
+
# Process each contour separately
|
| 393 |
+
enhanced_mask = np.zeros_like(filled_mask)
|
| 394 |
+
|
| 395 |
+
for contour in contours:
|
| 396 |
+
# Filter out small contours
|
| 397 |
+
if cv.contourArea(contour) < min_contour_area:
|
| 398 |
+
continue
|
| 399 |
+
|
| 400 |
+
# Create mask for this contour
|
| 401 |
+
contour_mask = np.zeros_like(filled_mask)
|
| 402 |
+
cv.drawContours(contour_mask, [contour], -1, 255, -1)
|
| 403 |
+
|
| 404 |
+
# Get bounding rectangle
|
| 405 |
+
x, y, w_rect, h_rect = cv.boundingRect(contour)
|
| 406 |
+
|
| 407 |
+
# Create region of interest
|
| 408 |
+
roi = contour_mask[y:y+h_rect, x:x+w_rect].copy()
|
| 409 |
+
|
| 410 |
+
if roi.size == 0:
|
| 411 |
+
continue
|
| 412 |
+
|
| 413 |
+
# Apply flood fill from borders to fill external areas
|
| 414 |
+
roi_filled = roi.copy()
|
| 415 |
+
roi_h, roi_w = roi_filled.shape
|
| 416 |
+
|
| 417 |
+
# Create flood mask for ROI
|
| 418 |
+
roi_flood_mask = np.zeros((roi_h + 2, roi_w + 2), np.uint8)
|
| 419 |
+
|
| 420 |
+
# Flood fill from all border points to mark external areas
|
| 421 |
+
border_points = []
|
| 422 |
+
# Top and bottom borders
|
| 423 |
+
for i in range(roi_w):
|
| 424 |
+
if roi_filled[0, i] == 0:
|
| 425 |
+
border_points.append((i, 0))
|
| 426 |
+
if roi_filled[roi_h-1, i] == 0:
|
| 427 |
+
border_points.append((i, roi_h-1))
|
| 428 |
+
|
| 429 |
+
# Left and right borders
|
| 430 |
+
for i in range(roi_h):
|
| 431 |
+
if roi_filled[i, 0] == 0:
|
| 432 |
+
border_points.append((0, i))
|
| 433 |
+
if roi_filled[i, roi_w-1] == 0:
|
| 434 |
+
border_points.append((roi_w-1, i))
|
| 435 |
+
|
| 436 |
+
# Apply flood fill from border points
|
| 437 |
+
external_mask = np.zeros_like(roi_filled)
|
| 438 |
+
for point in border_points:
|
| 439 |
+
if roi_filled[point[1], point[0]] == 0:
|
| 440 |
+
cv.floodFill(external_mask, roi_flood_mask, point, 255)
|
| 441 |
+
|
| 442 |
+
# Invert to get internal areas
|
| 443 |
+
internal_mask = cv.bitwise_not(external_mask)
|
| 444 |
+
|
| 445 |
+
# Combine with original contour
|
| 446 |
+
filled_contour = cv.bitwise_or(roi, internal_mask)
|
| 447 |
+
|
| 448 |
+
# Place back in full image
|
| 449 |
+
enhanced_mask[y:y+h_rect, x:x+w_rect] = cv.bitwise_or(
|
| 450 |
+
enhanced_mask[y:y+h_rect, x:x+w_rect], filled_contour)
|
| 451 |
+
|
| 452 |
+
# Step 3: Optional erosion to restore approximate original size
|
| 453 |
+
if erosion_iterations > 0:
|
| 454 |
+
erosion_kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE,
|
| 455 |
+
(dilation_kernel_size, dilation_kernel_size))
|
| 456 |
+
enhanced_mask = cv.erode(enhanced_mask, erosion_kernel, iterations=erosion_iterations)
|
| 457 |
+
|
| 458 |
+
# Step 4: Ensure we don't lose original detections AND respect table boundary
|
| 459 |
+
enhanced_mask = cv.bitwise_or(enhanced_mask, original_mask)
|
| 460 |
+
|
| 461 |
+
# RE-APPLY TABLE MASK - Ensure no processing outside table
|
| 462 |
+
if table_mask is not None:
|
| 463 |
+
enhanced_mask[~table_mask] = 0
|
| 464 |
+
|
| 465 |
+
# Convert back to boolean if input was boolean
|
| 466 |
+
if binary_mask.dtype == bool:
|
| 467 |
+
enhanced_mask = enhanced_mask > 0
|
| 468 |
+
|
| 469 |
+
# Create debug info
|
| 470 |
+
debug_info = {
|
| 471 |
+
'original_mask': original_mask,
|
| 472 |
+
'dilated_mask': dilated_mask,
|
| 473 |
+
'enhanced_mask': enhanced_mask,
|
| 474 |
+
'num_contours_processed': len([c for c in contours if cv.contourArea(c) >= min_contour_area])
|
| 475 |
+
}
|
| 476 |
+
|
| 477 |
+
return enhanced_mask, debug_info
|
| 478 |
+
|
| 479 |
+
def draw_heatmap_colorbar(self, frame: np.ndarray, heatmap: np.ndarray) -> np.ndarray:
|
| 480 |
+
"""
|
| 481 |
+
Draw a vertical heatmap color bar on the right side of the frame.
|
| 482 |
+
|
| 483 |
+
Args:
|
| 484 |
+
frame: Original frame
|
| 485 |
+
heatmap: Heatmap array with values 0-1
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
Frame with color bar overlay
|
| 489 |
+
"""
|
| 490 |
+
height, width = frame.shape[:2]
|
| 491 |
+
|
| 492 |
+
# Color bar dimensions
|
| 493 |
+
bar_width = 30
|
| 494 |
+
bar_height = int(height * 0.6)
|
| 495 |
+
bar_x = width - bar_width - 20
|
| 496 |
+
bar_y = int(height * 0.2)
|
| 497 |
+
|
| 498 |
+
# Create gradient color bar
|
| 499 |
+
gradient = np.linspace(1, 0, bar_height).reshape(-1, 1)
|
| 500 |
+
gradient = np.tile(gradient, (1, bar_width))
|
| 501 |
+
|
| 502 |
+
# Convert to color using JET colormap
|
| 503 |
+
gradient_colored = cv.applyColorMap((gradient * 255).astype(np.uint8), cv.COLORMAP_JET)
|
| 504 |
+
|
| 505 |
+
# Add border and background
|
| 506 |
+
cv.rectangle(frame, (bar_x - 2, bar_y - 2),
|
| 507 |
+
(bar_x + bar_width + 2, bar_y + bar_height + 2), (255, 255, 255), 2)
|
| 508 |
+
cv.rectangle(frame, (bar_x - 1, bar_y - 1),
|
| 509 |
+
(bar_x + bar_width + 1, bar_y + bar_height + 1), (0, 0, 0), 1)
|
| 510 |
+
|
| 511 |
+
# Place color bar
|
| 512 |
+
frame[bar_y:bar_y+bar_height, bar_x:bar_x+bar_width] = gradient_colored
|
| 513 |
+
|
| 514 |
+
# Add labels
|
| 515 |
+
labels = ["1.0", "0.75", "0.5", "0.25", "0.0"]
|
| 516 |
+
label_positions = [0, 0.25, 0.5, 0.75, 1.0]
|
| 517 |
+
|
| 518 |
+
for label, pos in zip(labels, label_positions):
|
| 519 |
+
y_pos = bar_y + int(pos * bar_height)
|
| 520 |
+
cv.putText(frame, label, (bar_x + bar_width + 5, y_pos + 5),
|
| 521 |
+
cv.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)
|
| 522 |
+
|
| 523 |
+
# Add title
|
| 524 |
+
cv.putText(frame, "HEAT", (bar_x - 5, bar_y - 10),
|
| 525 |
+
cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
| 526 |
+
|
| 527 |
+
# Add current max value
|
| 528 |
+
max_heat = heatmap.max()
|
| 529 |
+
cv.putText(frame, f"Max: {max_heat:.2f}", (bar_x - 20, bar_y + bar_height + 20),
|
| 530 |
+
cv.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)
|
| 531 |
+
|
| 532 |
+
return frame
|
| 533 |
+
|
| 534 |
+
def region_propfill_enhancement(self, binary_mask: np.ndarray,
|
| 535 |
+
table_mask: Optional[np.ndarray] = None, # ADDED parameter
|
| 536 |
+
dilation_kernel_size: int = 5,
|
| 537 |
+
dilation_iterations: int = 2,
|
| 538 |
+
erosion_iterations: int = 1,
|
| 539 |
+
fill_threshold: int = 200,
|
| 540 |
+
min_contour_area: int = 50) -> Tuple[np.ndarray, np.ndarray]:
|
| 541 |
+
"""
|
| 542 |
+
Enhance GMM binary prediction mask using dilation and region filling.
|
| 543 |
+
|
| 544 |
+
Args:
|
| 545 |
+
binary_mask: Binary mask from GMM detection (True for detected foreground)
|
| 546 |
+
table_mask: Optional binary mask defining table area (restricts processing)
|
| 547 |
+
dilation_kernel_size: Size of dilation kernel (odd number)
|
| 548 |
+
dilation_iterations: Number of dilation iterations to connect fragments
|
| 549 |
+
erosion_iterations: Number of erosion iterations to restore original size
|
| 550 |
+
fill_threshold: Threshold for flood fill operation
|
| 551 |
+
min_contour_area: Minimum contour area to consider for processing
|
| 552 |
+
|
| 553 |
+
Returns:
|
| 554 |
+
enhanced_mask: Improved binary mask with filled regions
|
| 555 |
+
debug_info: Dictionary containing intermediate results for debugging
|
| 556 |
+
"""
|
| 557 |
+
|
| 558 |
+
# Convert boolean mask to uint8 if needed
|
| 559 |
+
if binary_mask.dtype == bool:
|
| 560 |
+
mask_uint8 = (binary_mask * 255).astype(np.uint8)
|
| 561 |
+
else:
|
| 562 |
+
mask_uint8 = binary_mask.astype(np.uint8)
|
| 563 |
+
|
| 564 |
+
# Apply table mask if provided - CRITICAL FIX
|
| 565 |
+
if table_mask is not None:
|
| 566 |
+
# Ensure table_mask matches dimensions
|
| 567 |
+
if table_mask.shape != mask_uint8.shape:
|
| 568 |
+
table_mask = cv.resize(table_mask.astype(np.uint8),
|
| 569 |
+
(mask_uint8.shape[1], mask_uint8.shape[0]),
|
| 570 |
+
interpolation=cv.INTER_NEAREST) > 0
|
| 571 |
+
# Zero out everything outside table area
|
| 572 |
+
mask_uint8[~table_mask] = 0
|
| 573 |
+
|
| 574 |
+
# Store original for comparison
|
| 575 |
+
original_mask = mask_uint8.copy()
|
| 576 |
+
|
| 577 |
+
# Step 1: Apply dilation to connect fragmented detections
|
| 578 |
+
kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE,
|
| 579 |
+
(dilation_kernel_size, dilation_kernel_size))
|
| 580 |
+
|
| 581 |
+
# Dilate to connect nearby fragments
|
| 582 |
+
dilated_mask = cv.dilate(mask_uint8, kernel, iterations=dilation_iterations)
|
| 583 |
+
|
| 584 |
+
# Step 2: Apply flood fill to fill internal holes
|
| 585 |
+
filled_mask = dilated_mask.copy()
|
| 586 |
+
h, w = filled_mask.shape
|
| 587 |
+
|
| 588 |
+
# Create flood fill mask (needs to be 2 pixels larger)
|
| 589 |
+
flood_mask = np.zeros((h + 2, w + 2), np.uint8)
|
| 590 |
+
|
| 591 |
+
# Find contours to identify individual objects
|
| 592 |
+
contours, _ = cv.findContours(dilated_mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
|
| 593 |
+
|
| 594 |
+
# Process each contour separately
|
| 595 |
+
enhanced_mask = np.zeros_like(filled_mask)
|
| 596 |
+
|
| 597 |
+
for contour in contours:
|
| 598 |
+
# Filter out small contours
|
| 599 |
+
if cv.contourArea(contour) < min_contour_area:
|
| 600 |
+
continue
|
| 601 |
+
|
| 602 |
+
# Create mask for this contour
|
| 603 |
+
contour_mask = np.zeros_like(filled_mask)
|
| 604 |
+
cv.drawContours(contour_mask, [contour], -1, 255, -1)
|
| 605 |
+
|
| 606 |
+
# Get bounding rectangle
|
| 607 |
+
x, y, w_rect, h_rect = cv.boundingRect(contour)
|
| 608 |
+
|
| 609 |
+
# Create region of interest
|
| 610 |
+
roi = contour_mask[y:y+h_rect, x:x+w_rect].copy()
|
| 611 |
+
|
| 612 |
+
if roi.size == 0:
|
| 613 |
+
continue
|
| 614 |
+
|
| 615 |
+
# Apply flood fill from borders to fill external areas
|
| 616 |
+
roi_filled = roi.copy()
|
| 617 |
+
roi_h, roi_w = roi_filled.shape
|
| 618 |
+
|
| 619 |
+
# Create flood mask for ROI
|
| 620 |
+
roi_flood_mask = np.zeros((roi_h + 2, roi_w + 2), np.uint8)
|
| 621 |
+
|
| 622 |
+
# Flood fill from all border points to mark external areas
|
| 623 |
+
border_points = []
|
| 624 |
+
# Top and bottom borders
|
| 625 |
+
for i in range(roi_w):
|
| 626 |
+
if roi_filled[0, i] == 0:
|
| 627 |
+
border_points.append((i, 0))
|
| 628 |
+
if roi_filled[roi_h-1, i] == 0:
|
| 629 |
+
border_points.append((i, roi_h-1))
|
| 630 |
+
|
| 631 |
+
# Left and right borders
|
| 632 |
+
for i in range(roi_h):
|
| 633 |
+
if roi_filled[i, 0] == 0:
|
| 634 |
+
border_points.append((0, i))
|
| 635 |
+
if roi_filled[i, roi_w-1] == 0:
|
| 636 |
+
border_points.append((roi_w-1, i))
|
| 637 |
+
|
| 638 |
+
# Apply flood fill from border points
|
| 639 |
+
external_mask = np.zeros_like(roi_filled)
|
| 640 |
+
for point in border_points:
|
| 641 |
+
if roi_filled[point[1], point[0]] == 0:
|
| 642 |
+
cv.floodFill(external_mask, roi_flood_mask, point, 255)
|
| 643 |
+
|
| 644 |
+
# Invert to get internal areas
|
| 645 |
+
internal_mask = cv.bitwise_not(external_mask)
|
| 646 |
+
|
| 647 |
+
# Combine with original contour
|
| 648 |
+
filled_contour = cv.bitwise_or(roi, internal_mask)
|
| 649 |
+
|
| 650 |
+
# Place back in full image
|
| 651 |
+
enhanced_mask[y:y+h_rect, x:x+w_rect] = cv.bitwise_or(
|
| 652 |
+
enhanced_mask[y:y+h_rect, x:x+w_rect], filled_contour)
|
| 653 |
+
|
| 654 |
+
# Step 3: Optional erosion to restore approximate original size
|
| 655 |
+
if erosion_iterations > 0:
|
| 656 |
+
erosion_kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE,
|
| 657 |
+
(dilation_kernel_size, dilation_kernel_size))
|
| 658 |
+
enhanced_mask = cv.erode(enhanced_mask, erosion_kernel, iterations=erosion_iterations)
|
| 659 |
+
|
| 660 |
+
# Step 4: Ensure we don't lose original detections AND respect table boundary
|
| 661 |
+
enhanced_mask = cv.bitwise_or(enhanced_mask, original_mask)
|
| 662 |
+
|
| 663 |
+
# RE-APPLY TABLE MASK - Ensure no processing outside table
|
| 664 |
+
if table_mask is not None:
|
| 665 |
+
enhanced_mask[~table_mask] = 0
|
| 666 |
+
|
| 667 |
+
# Convert back to boolean if input was boolean
|
| 668 |
+
if binary_mask.dtype == bool:
|
| 669 |
+
enhanced_mask = enhanced_mask > 0
|
| 670 |
+
|
| 671 |
+
# Create debug info
|
| 672 |
+
debug_info = {
|
| 673 |
+
'original_mask': original_mask,
|
| 674 |
+
'dilated_mask': dilated_mask,
|
| 675 |
+
'enhanced_mask': enhanced_mask,
|
| 676 |
+
'num_contours_processed': len([c for c in contours if cv.contourArea(c) >= min_contour_area])
|
| 677 |
+
}
|
| 678 |
+
|
| 679 |
+
return enhanced_mask, debug_info
|
| 680 |
+
|
| 681 |
+
def visualize_mask_enhancement(self, original_mask: np.ndarray,
|
| 682 |
+
enhanced_mask: np.ndarray,
|
| 683 |
+
debug_info: dict,
|
| 684 |
+
window_prefix: str = "Enhancement"):
|
| 685 |
+
"""
|
| 686 |
+
Visualize the mask enhancement process.
|
| 687 |
+
|
| 688 |
+
Args:
|
| 689 |
+
original_mask: Original binary mask
|
| 690 |
+
enhanced_mask: Enhanced binary mask
|
| 691 |
+
debug_info: Debug information from enhancement process
|
| 692 |
+
window_prefix: Prefix for window names
|
| 693 |
+
"""
|
| 694 |
+
|
| 695 |
+
# Convert boolean masks to uint8 for display
|
| 696 |
+
if original_mask.dtype == bool:
|
| 697 |
+
orig_display = (original_mask * 255).astype(np.uint8)
|
| 698 |
+
else:
|
| 699 |
+
orig_display = original_mask.astype(np.uint8)
|
| 700 |
+
|
| 701 |
+
if enhanced_mask.dtype == bool:
|
| 702 |
+
enhanced_display = (enhanced_mask * 255).astype(np.uint8)
|
| 703 |
+
else:
|
| 704 |
+
enhanced_display = enhanced_mask.astype(np.uint8)
|
| 705 |
+
|
| 706 |
+
# Show progression
|
| 707 |
+
cv.imshow(f"{window_prefix} - Original Mask", orig_display)
|
| 708 |
+
cv.imshow(f"{window_prefix} - Dilated Mask", debug_info['dilated_mask'])
|
| 709 |
+
cv.imshow(f"{window_prefix} - Enhanced Mask", enhanced_display)
|
| 710 |
+
|
| 711 |
+
# Show difference
|
| 712 |
+
difference = cv.absdiff(enhanced_display, orig_display)
|
| 713 |
+
cv.imshow(f"{window_prefix} - Added Regions", difference)
|
| 714 |
+
|
| 715 |
+
# print(f"Processed {debug_info['num_contours_processed']} contours")
|
| 716 |
+
|
| 717 |
+
def infer(self, img, heatmap=None, alpha_start=0.002, alpha_end=0.0001,
|
| 718 |
+
table_mask=None, cleaning_mask=None):
|
| 719 |
+
"""
|
| 720 |
+
Inference with proper resizing to avoid spatial distortion:
|
| 721 |
+
- Preserves original aspect ratios
|
| 722 |
+
- Minimizes resize operations
|
| 723 |
+
- Ensures spatial consistency between input and output
|
| 724 |
+
"""
|
| 725 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 726 |
+
|
| 727 |
+
# Store original dimensions
|
| 728 |
+
orig_H, orig_W = img.shape[:2]
|
| 729 |
+
|
| 730 |
+
# Get model's expected dimensions
|
| 731 |
+
model_H, model_W = self.B.shape[:2]
|
| 732 |
+
|
| 733 |
+
# Check if resizing is needed
|
| 734 |
+
needs_resize = (orig_H, orig_W) != (model_H, model_W)
|
| 735 |
+
|
| 736 |
+
if needs_resize:
|
| 737 |
+
print(f"🔧 Resizing input from ({orig_H}, {orig_W}) to model size ({model_H}, {model_W})")
|
| 738 |
+
|
| 739 |
+
# Use INTER_LINEAR for better quality, avoid INTER_NEAREST
|
| 740 |
+
img_resized = cv.resize(img, (model_W, model_H), interpolation=cv.INTER_LINEAR)
|
| 741 |
+
img_tensor = torch.from_numpy(img_resized).float().to(device)
|
| 742 |
+
|
| 743 |
+
# Process table mask with same interpolation
|
| 744 |
+
if table_mask is not None:
|
| 745 |
+
print(f"🔧 Resizing table mask from {table_mask.shape} to ({model_H}, {model_W})")
|
| 746 |
+
# Use INTER_NEAREST for binary masks to preserve sharp edges
|
| 747 |
+
table_mask_resized = cv.resize(table_mask.astype(np.uint8), (model_W, model_H),
|
| 748 |
+
interpolation=cv.INTER_NEAREST)
|
| 749 |
+
table_mask_tensor = torch.from_numpy(table_mask_resized > 0).bool().to(device)
|
| 750 |
+
else:
|
| 751 |
+
table_mask_tensor = torch.ones((model_H, model_W), dtype=torch.bool, device=device)
|
| 752 |
+
|
| 753 |
+
# Resize existing heatmap if provided
|
| 754 |
+
if heatmap is not None:
|
| 755 |
+
if heatmap.shape != (model_H, model_W):
|
| 756 |
+
heatmap_resized = cv.resize(heatmap, (model_W, model_H), interpolation=cv.INTER_LINEAR)
|
| 757 |
+
heatmap = torch.from_numpy(heatmap_resized).float().to(device)
|
| 758 |
+
else:
|
| 759 |
+
heatmap = torch.from_numpy(heatmap).float().to(device)
|
| 760 |
+
else:
|
| 761 |
+
heatmap = torch.zeros((model_H, model_W), dtype=torch.float32, device=device)
|
| 762 |
+
|
| 763 |
+
working_H, working_W = model_H, model_W
|
| 764 |
+
|
| 765 |
+
else:
|
| 766 |
+
# No resizing needed
|
| 767 |
+
img_tensor = torch.from_numpy(img).float().to(device)
|
| 768 |
+
|
| 769 |
+
if table_mask is not None:
|
| 770 |
+
table_mask_tensor = torch.from_numpy(table_mask > 0).bool().to(device)
|
| 771 |
+
else:
|
| 772 |
+
table_mask_tensor = torch.ones((orig_H, orig_W), dtype=torch.bool, device=device)
|
| 773 |
+
|
| 774 |
+
if heatmap is not None:
|
| 775 |
+
heatmap = torch.from_numpy(heatmap).float().to(device)
|
| 776 |
+
else:
|
| 777 |
+
heatmap = torch.zeros((orig_H, orig_W), dtype=torch.float32, device=device)
|
| 778 |
+
|
| 779 |
+
working_H, working_W = orig_H, orig_W
|
| 780 |
+
|
| 781 |
+
# Initialize foreground detection mask
|
| 782 |
+
detection_mask = table_mask_tensor.clone()
|
| 783 |
+
|
| 784 |
+
# GMM processing (unchanged)
|
| 785 |
+
for k in range(self.K):
|
| 786 |
+
B_mask = (self.B >= (k + 1)).to(device)
|
| 787 |
+
B_mask = B_mask & table_mask_tensor
|
| 788 |
+
|
| 789 |
+
mu_k = self.mu[:, :, k, :].to(device)
|
| 790 |
+
sigma_k = self.sigma[:, :, k, :, :].to(device)
|
| 791 |
+
|
| 792 |
+
delta = img_tensor - mu_k
|
| 793 |
+
delta = delta.unsqueeze(-1)
|
| 794 |
+
sigma_inv = torch.linalg.inv(sigma_k)
|
| 795 |
+
temp = torch.matmul(sigma_inv, delta)
|
| 796 |
+
dist_sq = torch.matmul(delta.transpose(-2, -1), temp).squeeze(-1).squeeze(-1)
|
| 797 |
+
dist = torch.sqrt(dist_sq + 1e-5)
|
| 798 |
+
|
| 799 |
+
match_mask = (dist < 7.0) & B_mask
|
| 800 |
+
detection_mask[match_mask] = False
|
| 801 |
+
img_tensor[match_mask] = mu_k[match_mask]
|
| 802 |
+
|
| 803 |
+
# Foreground detection
|
| 804 |
+
foreground_mask = detection_mask & (img_tensor.abs().sum(dim=-1) > 0) & table_mask_tensor
|
| 805 |
+
#------------------------------------------------------------Below line was replaced with region propfill code
|
| 806 |
+
# filled_mask = foreground_mask
|
| 807 |
+
|
| 808 |
+
|
| 809 |
+
# === REGION PROPFILL ENHANCEMENT ===
|
| 810 |
+
# Convert foreground mask to numpy for processing
|
| 811 |
+
foreground_np = foreground_mask.detach().cpu().numpy()
|
| 812 |
+
table_mask_np = table_mask_tensor.detach().cpu().numpy() if table_mask_tensor is not None else None
|
| 813 |
+
# Apply region propfill enhancement with hardcoded parameters
|
| 814 |
+
enhanced_mask, debug_info = self.region_propfill_enhancement(
|
| 815 |
+
foreground_np,table_mask=table_mask_np,
|
| 816 |
+
dilation_kernel_size=3, # Hardcoded: size of dilation kernel
|
| 817 |
+
dilation_iterations=1, # Hardcoded: connect nearby fragments
|
| 818 |
+
erosion_iterations=2, # Hardcoded: restore original size
|
| 819 |
+
fill_threshold=230, # Hardcoded: threshold for flood fill
|
| 820 |
+
min_contour_area=200 # Hardcoded: filter small noise
|
| 821 |
+
)
|
| 822 |
+
|
| 823 |
+
# Convert enhanced mask back to tensor
|
| 824 |
+
filled_mask = torch.from_numpy(enhanced_mask).bool().to(device)
|
| 825 |
+
|
| 826 |
+
# Optional: Print enhancement statistics
|
| 827 |
+
if np.any(enhanced_mask != foreground_np):
|
| 828 |
+
added_pixels = np.sum(enhanced_mask) - np.sum(foreground_np)
|
| 829 |
+
# print(f"🔧 Region propfill added {added_pixels} pixels to fill hollow regions")
|
| 830 |
+
#---------------------------------------------------------------------------------------------------------------------------------
|
| 831 |
+
# Heatmap accumulation
|
| 832 |
+
# pixelwise_alpha = alpha_start - (heatmap * (alpha_start - alpha_end))
|
| 833 |
+
# pixelwise_alpha = torch.clamp(pixelwise_alpha, min=alpha_end)
|
| 834 |
+
|
| 835 |
+
# heatmap = torch.where(
|
| 836 |
+
# filled_mask & table_mask_tensor,
|
| 837 |
+
# torch.clamp(heatmap + pixelwise_alpha, 0, 1),
|
| 838 |
+
# heatmap
|
| 839 |
+
# )
|
| 840 |
+
|
| 841 |
+
if heatmap is None:
|
| 842 |
+
heatmap = torch.zeros((working_H, working_W), dtype=torch.float32, device=device)
|
| 843 |
+
|
| 844 |
+
pixelwise_alpha = alpha_start - (heatmap * (alpha_start - alpha_end))
|
| 845 |
+
pixelwise_alpha = torch.clamp(pixelwise_alpha, min=alpha_end)
|
| 846 |
+
|
| 847 |
+
# === ACCUMULATION: Grow heatmap slowly where foreground detected ===
|
| 848 |
+
heatmap = torch.where(
|
| 849 |
+
filled_mask & table_mask_tensor,
|
| 850 |
+
torch.clamp(heatmap + pixelwise_alpha * 0.3, 0, 1), # 0.3 factor = SLOW growth
|
| 851 |
+
heatmap
|
| 852 |
+
)
|
| 853 |
+
if cleaning_mask is not None:
|
| 854 |
+
# Convert cleaning mask to tensor
|
| 855 |
+
cleaning_tensor = torch.from_numpy(cleaning_mask > 0).bool().to(device)
|
| 856 |
+
|
| 857 |
+
# Ensure dimensions match
|
| 858 |
+
if cleaning_tensor.shape != heatmap.shape:
|
| 859 |
+
# This shouldn't happen, but safety check
|
| 860 |
+
pass
|
| 861 |
+
|
| 862 |
+
# Calculate decay rate (slower for older/hotter areas)
|
| 863 |
+
decay_alpha = alpha_start - (heatmap * (alpha_start - alpha_end))
|
| 864 |
+
decay_alpha = torch.clamp(decay_alpha, min=alpha_end)
|
| 865 |
+
|
| 866 |
+
# Apply gradual decay where cleaning
|
| 867 |
+
heatmap = torch.where(
|
| 868 |
+
cleaning_tensor & table_mask_tensor,
|
| 869 |
+
torch.clamp(heatmap - decay_alpha * 0.8, 0, 1), # 0.8 = decay slightly faster than growth
|
| 870 |
+
heatmap
|
| 871 |
+
)
|
| 872 |
+
# === CRITICAL: Proper output resizing ===
|
| 873 |
+
heatmap_np = heatmap.detach().cpu().numpy()
|
| 874 |
+
|
| 875 |
+
if needs_resize:
|
| 876 |
+
# Resize results back to original dimensions
|
| 877 |
+
# Use high-quality interpolation for final output
|
| 878 |
+
result_img = cv.resize(img_tensor.detach().cpu().numpy(), (orig_W, orig_H),
|
| 879 |
+
interpolation=cv.INTER_LINEAR)
|
| 880 |
+
|
| 881 |
+
# For heatmap, use INTER_LINEAR to preserve smooth gradients
|
| 882 |
+
heatmap_np = cv.resize(heatmap_np, (orig_W, orig_H), interpolation=cv.INTER_LINEAR)
|
| 883 |
+
|
| 884 |
+
# Resize table mask back for final masking
|
| 885 |
+
if table_mask is not None:
|
| 886 |
+
table_mask_final = cv.resize(table_mask_tensor.detach().cpu().numpy().astype(np.uint8),
|
| 887 |
+
(orig_W, orig_H), interpolation=cv.INTER_NEAREST) > 0
|
| 888 |
+
heatmap_np = heatmap_np * table_mask_final
|
| 889 |
+
|
| 890 |
+
# Use original image for blending
|
| 891 |
+
result = img.copy()
|
| 892 |
+
else:
|
| 893 |
+
result_img = img_tensor.detach().cpu().numpy()
|
| 894 |
+
result = img.copy()
|
| 895 |
+
|
| 896 |
+
if table_mask is not None:
|
| 897 |
+
table_mask_np = table_mask_tensor.detach().cpu().numpy()
|
| 898 |
+
heatmap_np = heatmap_np * table_mask_np
|
| 899 |
+
|
| 900 |
+
# Visualization with proper blending
|
| 901 |
+
# heatmap_viz = cv.applyColorMap((heatmap_np * 255).astype(np.uint8), cv.COLORMAP_JET)
|
| 902 |
+
# significant_heat = (heatmap_np > 0.1)
|
| 903 |
+
|
| 904 |
+
# if np.any(significant_heat):
|
| 905 |
+
# img_region = result[significant_heat]
|
| 906 |
+
# heat_region = heatmap_viz[significant_heat]
|
| 907 |
+
|
| 908 |
+
# if img_region.size > 0 and heat_region.size > 0:
|
| 909 |
+
# blended = cv.addWeighted(img_region, 0.7, heat_region, 0.3, 0)
|
| 910 |
+
# result[significant_heat] = blended
|
| 911 |
+
|
| 912 |
+
# return result, heatmap_np
|
| 913 |
+
# === FIX: Ensure heatmap stays ONLY within table bounds ===
|
| 914 |
+
if table_mask is not None:
|
| 915 |
+
# Match dimensions
|
| 916 |
+
if table_mask.shape != heatmap_np.shape:
|
| 917 |
+
table_mask_resized = cv.resize(
|
| 918 |
+
table_mask.astype(np.uint8),
|
| 919 |
+
(heatmap_np.shape[1], heatmap_np.shape[0]),
|
| 920 |
+
interpolation=cv.INTER_NEAREST
|
| 921 |
+
)
|
| 922 |
+
table_mask_final = table_mask_resized > 0
|
| 923 |
+
else:
|
| 924 |
+
table_mask_final = table_mask > 0
|
| 925 |
+
|
| 926 |
+
# CRITICAL: Zero out heatmap completely outside table
|
| 927 |
+
heatmap_np = heatmap_np * table_mask_final.astype(np.float32)
|
| 928 |
+
else:
|
| 929 |
+
table_mask_final = np.ones(heatmap_np.shape, dtype=bool)
|
| 930 |
+
|
| 931 |
+
# Create visualization ONLY on table area (no blue background)
|
| 932 |
+
heatmap_colored = cv.applyColorMap(
|
| 933 |
+
(heatmap_np * 255).astype(np.uint8),
|
| 934 |
+
cv.COLORMAP_JET
|
| 935 |
+
)
|
| 936 |
+
|
| 937 |
+
# Apply transparency: only blend where heatmap > threshold AND inside table
|
| 938 |
+
significant_heat = (heatmap_np > 0.1) & table_mask_final
|
| 939 |
+
|
| 940 |
+
if np.any(significant_heat):
|
| 941 |
+
# Blend ONLY significant areas
|
| 942 |
+
result_blended = result.copy()
|
| 943 |
+
result_blended[significant_heat] = cv.addWeighted(
|
| 944 |
+
result[significant_heat], 0.7,
|
| 945 |
+
heatmap_colored[significant_heat], 0.3, 0
|
| 946 |
+
)
|
| 947 |
+
result = result_blended
|
| 948 |
+
|
| 949 |
+
return result, heatmap_np
|
app_s_a_LiveCam.py
ADDED
|
@@ -0,0 +1,1157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from collections import deque
|
| 5 |
+
from threading import Thread, Lock
|
| 6 |
+
from queue import Queue
|
| 7 |
+
import time
|
| 8 |
+
import logging
|
| 9 |
+
import os
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
|
| 13 |
+
from fastapi import FastAPI, HTTPException, StreamingResponse
|
| 14 |
+
from fastapi.responses import FileResponse, StreamingResponse
|
| 15 |
+
import asyncio
|
| 16 |
+
import uvicorn
|
| 17 |
+
from pydantic import BaseModel
|
| 18 |
+
from typing import Optional
|
| 19 |
+
import requests
|
| 20 |
+
from datetime import datetime, timedelta
|
| 21 |
+
|
| 22 |
+
# ===== IMPORT THE DISCORD ALERT MANAGER =====
|
| 23 |
+
from send_discord import DiscordAlertManager
|
| 24 |
+
|
| 25 |
+
logging.basicConfig(level=logging.INFO)
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
+
|
| 28 |
+
# ==================== DATA MODELS ====================
|
| 29 |
+
|
| 30 |
+
class StreamStartRequest(BaseModel):
|
| 31 |
+
"""Start streaming request."""
|
| 32 |
+
rtmp_input_url: str
|
| 33 |
+
camera_path: str # e.g., "models/cam1" - will auto-pick gmm_model.joblib and mask.png
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class StreamStopRequest(BaseModel):
|
| 37 |
+
"""Stop streaming request."""
|
| 38 |
+
stream_id: str
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class StreamStatusResponse(BaseModel):
|
| 42 |
+
"""Stream status response."""
|
| 43 |
+
stream_id: str
|
| 44 |
+
status: str
|
| 45 |
+
fps: float
|
| 46 |
+
buffered_frames: int
|
| 47 |
+
queue_size: int
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# ==================== CIRCULAR BUFFER ====================
|
| 51 |
+
|
| 52 |
+
class CircularFrameBuffer:
|
| 53 |
+
"""Fixed-size buffer for storing processed frames."""
|
| 54 |
+
|
| 55 |
+
def __init__(self, max_frames: int = 30):
|
| 56 |
+
self.max_frames = max_frames
|
| 57 |
+
self.frames = deque(maxlen=max_frames)
|
| 58 |
+
self.lock = Lock()
|
| 59 |
+
self.sequence_ids = deque(maxlen=max_frames)
|
| 60 |
+
|
| 61 |
+
def add_frame(self, frame: np.ndarray, seq_id: int) -> None:
|
| 62 |
+
"""Add processed frame to buffer."""
|
| 63 |
+
with self.lock:
|
| 64 |
+
self.frames.append(frame.copy())
|
| 65 |
+
self.sequence_ids.append(seq_id)
|
| 66 |
+
|
| 67 |
+
def get_latest(self) -> tuple:
|
| 68 |
+
"""Get most recent frame."""
|
| 69 |
+
with self.lock:
|
| 70 |
+
if len(self.frames) > 0:
|
| 71 |
+
return self.frames[-1].copy(), self.sequence_ids[-1]
|
| 72 |
+
return None, None
|
| 73 |
+
|
| 74 |
+
def clear(self) -> None:
|
| 75 |
+
"""Clear buffer."""
|
| 76 |
+
with self.lock:
|
| 77 |
+
self.frames.clear()
|
| 78 |
+
self.sequence_ids.clear()
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# ==================== LIVE MONITOR ====================
|
| 82 |
+
|
| 83 |
+
class LiveHygieneMonitor:
|
| 84 |
+
"""Production-ready hygiene monitor for live streams."""
|
| 85 |
+
|
| 86 |
+
def __init__(self, segformer_path: str, max_buffer_frames: int = 30):
|
| 87 |
+
self.segformer_path = segformer_path
|
| 88 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 89 |
+
|
| 90 |
+
# Model loading
|
| 91 |
+
self.model = None
|
| 92 |
+
self.processor = None
|
| 93 |
+
self._load_segformer()
|
| 94 |
+
|
| 95 |
+
# GMM components
|
| 96 |
+
self.gmm_model = None
|
| 97 |
+
self.gmm_heatmap = None
|
| 98 |
+
self.table_mask = None
|
| 99 |
+
|
| 100 |
+
# Live streaming state
|
| 101 |
+
self.frame_buffer = CircularFrameBuffer(max_frames=max_buffer_frames)
|
| 102 |
+
self.input_queue = Queue(maxsize=5)
|
| 103 |
+
self.processing_thread = None
|
| 104 |
+
self.is_running = False
|
| 105 |
+
|
| 106 |
+
# Frame sequence tracking
|
| 107 |
+
self.frame_sequence = 0
|
| 108 |
+
self.frame_lock = Lock()
|
| 109 |
+
|
| 110 |
+
# State management
|
| 111 |
+
self.detection_frames_count = 0
|
| 112 |
+
self.no_detection_frames_count = 0
|
| 113 |
+
self.cleaning_active = False
|
| 114 |
+
self.cleaning_start_threshold = 4
|
| 115 |
+
self.cleaning_stop_threshold = 12
|
| 116 |
+
|
| 117 |
+
# Performance tracking
|
| 118 |
+
self.frame_times = deque(maxlen=30)
|
| 119 |
+
self.last_frame_time = time.time()
|
| 120 |
+
|
| 121 |
+
# Optimization flags
|
| 122 |
+
self.skip_segformer_every_n_frames = 2
|
| 123 |
+
self.segformer_skip_counter = 0
|
| 124 |
+
self.last_cloth_mask = None
|
| 125 |
+
|
| 126 |
+
# Visualization settings
|
| 127 |
+
self.show_cloth_detection = True
|
| 128 |
+
self.erasure_radius_factor = 0.2
|
| 129 |
+
self.gaussian_sigma_factor = 0.8
|
| 130 |
+
|
| 131 |
+
self.tracker = None
|
| 132 |
+
self.track_trajectories = {}
|
| 133 |
+
self.max_trajectory_length = 40
|
| 134 |
+
self.track_colors = {}
|
| 135 |
+
|
| 136 |
+
# Alert manager - ADD THIS
|
| 137 |
+
self.alert_manager = None
|
| 138 |
+
self.current_camera_name = "Default Camera"
|
| 139 |
+
|
| 140 |
+
logger.info(f"Live Monitor initialized on {self.device}")
|
| 141 |
+
|
| 142 |
+
def _load_segformer(self):
|
| 143 |
+
"""Load SegFormer model."""
|
| 144 |
+
try:
|
| 145 |
+
self.model = SegformerForSemanticSegmentation.from_pretrained(self.segformer_path)
|
| 146 |
+
self.processor = SegformerImageProcessor(do_reduce_labels=False)
|
| 147 |
+
self.model.to(self.device)
|
| 148 |
+
self.model.eval()
|
| 149 |
+
logger.info(f"SegFormer loaded on {self.device}")
|
| 150 |
+
except Exception as e:
|
| 151 |
+
logger.error(f"Failed to load SegFormer: {e}")
|
| 152 |
+
|
| 153 |
+
def _init_tracker(self):
|
| 154 |
+
"""Lazy-init tracker."""
|
| 155 |
+
if self.tracker is None:
|
| 156 |
+
from deep_sort_realtime.deepsort_tracker import DeepSort
|
| 157 |
+
self.tracker = DeepSort(
|
| 158 |
+
max_age=15,
|
| 159 |
+
n_init=2,
|
| 160 |
+
nms_max_overlap=0.7,
|
| 161 |
+
max_cosine_distance=0.4,
|
| 162 |
+
nn_budget=50,
|
| 163 |
+
embedder="mobilenet",
|
| 164 |
+
half=True,
|
| 165 |
+
embedder_gpu=torch.cuda.is_available()
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
def load_gmm_model(self, gmm_path: str) -> bool:
|
| 169 |
+
"""Load GMM model."""
|
| 170 |
+
try:
|
| 171 |
+
from GMM import GMM
|
| 172 |
+
self.gmm_model = GMM.load_model(gmm_path)
|
| 173 |
+
if self.gmm_model.img_shape:
|
| 174 |
+
h, w = self.gmm_model.img_shape[:2]
|
| 175 |
+
self.gmm_heatmap = np.zeros((h, w), dtype=np.float32)
|
| 176 |
+
logger.info("GMM model loaded")
|
| 177 |
+
return True
|
| 178 |
+
except Exception as e:
|
| 179 |
+
logger.error(f"Failed to load GMM: {e}")
|
| 180 |
+
return False
|
| 181 |
+
|
| 182 |
+
def load_table_mask(self, mask_path: str) -> bool:
|
| 183 |
+
"""Load table mask."""
|
| 184 |
+
try:
|
| 185 |
+
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
|
| 186 |
+
self.table_mask = (mask > 128).astype(np.uint8)
|
| 187 |
+
logger.info(f"Table mask loaded: {mask.shape}")
|
| 188 |
+
return True
|
| 189 |
+
except Exception as e:
|
| 190 |
+
logger.error(f"Failed to load mask: {e}")
|
| 191 |
+
return False
|
| 192 |
+
|
| 193 |
+
def add_frame(self, frame: np.ndarray) -> None:
|
| 194 |
+
"""Add incoming frame (non-blocking)."""
|
| 195 |
+
try:
|
| 196 |
+
self.input_queue.put_nowait(frame)
|
| 197 |
+
except:
|
| 198 |
+
pass
|
| 199 |
+
|
| 200 |
+
def start_processing(self) -> None:
|
| 201 |
+
"""Start background processing."""
|
| 202 |
+
if self.is_running:
|
| 203 |
+
return
|
| 204 |
+
self.is_running = True
|
| 205 |
+
self.processing_thread = Thread(target=self._process_loop, daemon=True)
|
| 206 |
+
self.processing_thread.start()
|
| 207 |
+
logger.info("Processing thread started")
|
| 208 |
+
|
| 209 |
+
def stop_processing(self) -> None:
|
| 210 |
+
"""Stop processing."""
|
| 211 |
+
self.is_running = False
|
| 212 |
+
if self.processing_thread:
|
| 213 |
+
self.processing_thread.join(timeout=5)
|
| 214 |
+
self.frame_buffer.clear()
|
| 215 |
+
logger.info("Processing stopped")
|
| 216 |
+
|
| 217 |
+
def _get_next_sequence_id(self) -> int:
|
| 218 |
+
"""Thread-safe sequence ID."""
|
| 219 |
+
with self.frame_lock:
|
| 220 |
+
self.frame_sequence += 1
|
| 221 |
+
return self.frame_sequence
|
| 222 |
+
|
| 223 |
+
def _process_loop(self) -> None:
|
| 224 |
+
"""Main processing loop."""
|
| 225 |
+
while self.is_running:
|
| 226 |
+
try:
|
| 227 |
+
frame = self.input_queue.get(timeout=1)
|
| 228 |
+
seq_id = self._get_next_sequence_id()
|
| 229 |
+
|
| 230 |
+
frame = self._resize_frame(frame, target_width=1024)
|
| 231 |
+
cloth_mask = self._detect_cloth_fast(frame)
|
| 232 |
+
cleaning_status = self._update_cleaning_status(cloth_mask)
|
| 233 |
+
|
| 234 |
+
tracks = None
|
| 235 |
+
if self.cleaning_active:
|
| 236 |
+
self._init_tracker()
|
| 237 |
+
tracks = self._track_cloth(frame, cloth_mask)
|
| 238 |
+
|
| 239 |
+
self._update_gmm_fast(frame, cloth_mask, tracks)
|
| 240 |
+
viz_frame = self._create_visualization(frame, cloth_mask, tracks, cleaning_status)
|
| 241 |
+
self.frame_buffer.add_frame(viz_frame, seq_id)
|
| 242 |
+
|
| 243 |
+
elapsed = time.time() - self.last_frame_time
|
| 244 |
+
self.frame_times.append(elapsed)
|
| 245 |
+
self.last_frame_time = time.time()
|
| 246 |
+
|
| 247 |
+
if seq_id % 30 == 0:
|
| 248 |
+
avg_time = np.mean(self.frame_times)
|
| 249 |
+
fps = 1.0 / avg_time if avg_time > 0 else 0
|
| 250 |
+
logger.info(f"Seq {seq_id} | {fps:.1f} FPS | {cleaning_status}")
|
| 251 |
+
|
| 252 |
+
except Exception as e:
|
| 253 |
+
logger.error(f"Processing error: {e}")
|
| 254 |
+
continue
|
| 255 |
+
|
| 256 |
+
def _resize_frame(self, frame: np.ndarray, target_width: int = 1024) -> np.ndarray:
|
| 257 |
+
"""Resize frame."""
|
| 258 |
+
h, w = frame.shape[:2]
|
| 259 |
+
if w > target_width:
|
| 260 |
+
scale = target_width / w
|
| 261 |
+
new_h = int(h * scale)
|
| 262 |
+
return cv2.resize(frame, (target_width, new_h))
|
| 263 |
+
return frame
|
| 264 |
+
|
| 265 |
+
def _detect_cloth_fast(self, frame: np.ndarray) -> np.ndarray:
|
| 266 |
+
"""Fast cloth detection with skipping."""
|
| 267 |
+
if self.model is None:
|
| 268 |
+
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 269 |
+
|
| 270 |
+
self.segformer_skip_counter += 1
|
| 271 |
+
if self.segformer_skip_counter < self.skip_segformer_every_n_frames:
|
| 272 |
+
if self.last_cloth_mask is not None:
|
| 273 |
+
return self.last_cloth_mask
|
| 274 |
+
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 275 |
+
|
| 276 |
+
self.segformer_skip_counter = 0
|
| 277 |
+
|
| 278 |
+
try:
|
| 279 |
+
height, width = frame.shape[:2]
|
| 280 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 281 |
+
pil_image = Image.fromarray(frame_rgb)
|
| 282 |
+
|
| 283 |
+
with torch.no_grad():
|
| 284 |
+
inputs = self.processor(images=pil_image, return_tensors="pt")
|
| 285 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 286 |
+
outputs = self.model(**inputs)
|
| 287 |
+
logits = outputs.logits
|
| 288 |
+
|
| 289 |
+
upsampled = torch.nn.functional.interpolate(
|
| 290 |
+
logits, size=(height, width), mode="bilinear", align_corners=False
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
cloth_mask = (upsampled.argmax(dim=1)[0].cpu().numpy() == 1).astype(np.uint8)
|
| 294 |
+
|
| 295 |
+
if self.table_mask is not None:
|
| 296 |
+
if self.table_mask.shape != cloth_mask.shape:
|
| 297 |
+
table_resized = cv2.resize(self.table_mask, (width, height))
|
| 298 |
+
else:
|
| 299 |
+
table_resized = self.table_mask
|
| 300 |
+
cloth_mask = cloth_mask * table_resized
|
| 301 |
+
|
| 302 |
+
self.last_cloth_mask = cloth_mask
|
| 303 |
+
return cloth_mask
|
| 304 |
+
|
| 305 |
+
except Exception as e:
|
| 306 |
+
logger.error(f"Cloth detection error: {e}")
|
| 307 |
+
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 308 |
+
|
| 309 |
+
def _track_cloth(self, frame: np.ndarray, cloth_mask: np.ndarray) -> list:
|
| 310 |
+
"""Fast tracking."""
|
| 311 |
+
if self.tracker is None:
|
| 312 |
+
return []
|
| 313 |
+
|
| 314 |
+
try:
|
| 315 |
+
contours, _ = cv2.findContours(cloth_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 316 |
+
detections = []
|
| 317 |
+
|
| 318 |
+
for contour in contours:
|
| 319 |
+
area = cv2.contourArea(contour)
|
| 320 |
+
if area < 150:
|
| 321 |
+
continue
|
| 322 |
+
x, y, w, h = cv2.boundingRect(contour)
|
| 323 |
+
if w > 0 and h > 0:
|
| 324 |
+
detections.append(([x, y, w, h], 0.95, 'cloth'))
|
| 325 |
+
|
| 326 |
+
if not detections:
|
| 327 |
+
return []
|
| 328 |
+
|
| 329 |
+
tracks = self.tracker.update_tracks(detections, frame=frame)
|
| 330 |
+
|
| 331 |
+
height, width = frame.shape[:2]
|
| 332 |
+
for track in tracks:
|
| 333 |
+
if not track.is_confirmed():
|
| 334 |
+
continue
|
| 335 |
+
|
| 336 |
+
track_id = track.track_id
|
| 337 |
+
bbox = track.to_ltrb()
|
| 338 |
+
cx = int((bbox[0] + bbox[2]) / 2)
|
| 339 |
+
cy = int((bbox[1] + bbox[3]) / 2)
|
| 340 |
+
|
| 341 |
+
if 0 <= cx < width and 0 <= cy < height:
|
| 342 |
+
if track_id not in self.track_trajectories:
|
| 343 |
+
self.track_trajectories[track_id] = deque(maxlen=self.max_trajectory_length)
|
| 344 |
+
self.track_colors[track_id] = (255, 255, 0)
|
| 345 |
+
self.track_trajectories[track_id].append((cx, cy))
|
| 346 |
+
|
| 347 |
+
active_ids = {track.track_id for track in tracks if track.is_confirmed()}
|
| 348 |
+
dead_ids = set(self.track_trajectories.keys()) - active_ids
|
| 349 |
+
for dead_id in dead_ids:
|
| 350 |
+
self.track_trajectories.pop(dead_id, None)
|
| 351 |
+
self.track_colors.pop(dead_id, None)
|
| 352 |
+
|
| 353 |
+
return tracks
|
| 354 |
+
|
| 355 |
+
except Exception as e:
|
| 356 |
+
logger.error(f"Tracking error: {e}")
|
| 357 |
+
return []
|
| 358 |
+
|
| 359 |
+
def _update_gmm_fast(self, frame: np.ndarray, cloth_mask: np.ndarray, tracks: list) -> None:
|
| 360 |
+
"""Lightweight GMM update."""
|
| 361 |
+
if self.gmm_model is None:
|
| 362 |
+
return
|
| 363 |
+
|
| 364 |
+
try:
|
| 365 |
+
height, width = frame.shape[:2]
|
| 366 |
+
table_mask = None
|
| 367 |
+
if self.table_mask is not None:
|
| 368 |
+
if self.table_mask.shape != (height, width):
|
| 369 |
+
table_mask = cv2.resize(self.table_mask, (width, height))
|
| 370 |
+
else:
|
| 371 |
+
table_mask = self.table_mask
|
| 372 |
+
|
| 373 |
+
_, self.gmm_heatmap = self.gmm_model.infer(
|
| 374 |
+
frame, heatmap=self.gmm_heatmap,
|
| 375 |
+
alpha_start=0.008, alpha_end=0.0004,
|
| 376 |
+
table_mask=table_mask
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
if self.cleaning_active and tracks:
|
| 380 |
+
for track in tracks:
|
| 381 |
+
if not track.is_confirmed():
|
| 382 |
+
continue
|
| 383 |
+
|
| 384 |
+
track_id = track.track_id
|
| 385 |
+
if track_id not in self.track_trajectories:
|
| 386 |
+
continue
|
| 387 |
+
|
| 388 |
+
trajectory = list(self.track_trajectories[track_id])
|
| 389 |
+
if len(trajectory) < 2:
|
| 390 |
+
continue
|
| 391 |
+
|
| 392 |
+
bbox = track.to_ltrb()
|
| 393 |
+
w = bbox[2] - bbox[0]
|
| 394 |
+
h = bbox[3] - bbox[1]
|
| 395 |
+
|
| 396 |
+
radius = int(min(w, h) * self.erasure_radius_factor)
|
| 397 |
+
radius = max(radius, 12)
|
| 398 |
+
|
| 399 |
+
if radius <= 0 or w <= 0 or h <= 0:
|
| 400 |
+
continue
|
| 401 |
+
|
| 402 |
+
for i in range(len(trajectory) - 1):
|
| 403 |
+
self._erase_at_point(trajectory[i], radius, table_mask)
|
| 404 |
+
|
| 405 |
+
except Exception as e:
|
| 406 |
+
logger.error(f"GMM update error: {e}")
|
| 407 |
+
|
| 408 |
+
def _erase_at_point(self, point: tuple, radius: int, table_mask: np.ndarray) -> None:
|
| 409 |
+
"""Fast point-based erasure."""
|
| 410 |
+
if self.gmm_heatmap is None or radius <= 0:
|
| 411 |
+
return
|
| 412 |
+
|
| 413 |
+
x, y = point
|
| 414 |
+
height, width = self.gmm_heatmap.shape
|
| 415 |
+
|
| 416 |
+
y_min = max(0, y - radius)
|
| 417 |
+
y_max = min(height, y + radius)
|
| 418 |
+
x_min = max(0, x - radius)
|
| 419 |
+
x_max = min(width, x + radius)
|
| 420 |
+
|
| 421 |
+
if y_min >= y_max or x_min >= x_max:
|
| 422 |
+
return
|
| 423 |
+
|
| 424 |
+
y_indices, x_indices = np.ogrid[y_min:y_max, x_min:x_max]
|
| 425 |
+
distance_sq = (x_indices - x)**2 + (y_indices - y)**2
|
| 426 |
+
|
| 427 |
+
gaussian = np.exp(-distance_sq / (2 * (radius * self.gaussian_sigma_factor)**2))
|
| 428 |
+
|
| 429 |
+
if table_mask is not None:
|
| 430 |
+
gaussian = gaussian * table_mask[y_min:y_max, x_min:x_max]
|
| 431 |
+
|
| 432 |
+
decay = 0.025 * gaussian
|
| 433 |
+
self.gmm_heatmap[y_min:y_max, x_min:x_max] = np.maximum(
|
| 434 |
+
0, self.gmm_heatmap[y_min:y_max, x_min:x_max] - decay
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
def _update_cleaning_status(self, cloth_mask: np.ndarray) -> str:
|
| 438 |
+
"""Update cleaning status."""
|
| 439 |
+
has_cloth = np.sum(cloth_mask) > 100
|
| 440 |
+
|
| 441 |
+
if has_cloth:
|
| 442 |
+
self.detection_frames_count += 1
|
| 443 |
+
self.no_detection_frames_count = 0
|
| 444 |
+
else:
|
| 445 |
+
self.no_detection_frames_count += 1
|
| 446 |
+
self.detection_frames_count = 0
|
| 447 |
+
|
| 448 |
+
if not self.cleaning_active and self.detection_frames_count >= self.cleaning_start_threshold:
|
| 449 |
+
self.cleaning_active = True
|
| 450 |
+
return "CLEANING STARTED"
|
| 451 |
+
elif self.cleaning_active and self.no_detection_frames_count >= self.cleaning_stop_threshold:
|
| 452 |
+
self.cleaning_active = False
|
| 453 |
+
return "CLEANING STOPPED"
|
| 454 |
+
|
| 455 |
+
return "CLEANING ACTIVE" if self.cleaning_active else "NO CLEANING"
|
| 456 |
+
|
| 457 |
+
def _create_visualization(self, frame: np.ndarray, cloth_mask: np.ndarray,
|
| 458 |
+
tracks: list, cleaning_status: str) -> np.ndarray:
|
| 459 |
+
"""Create fast visualization."""
|
| 460 |
+
result = frame.copy()
|
| 461 |
+
|
| 462 |
+
if np.sum(cloth_mask) > 0:
|
| 463 |
+
overlay = result.copy()
|
| 464 |
+
cloth_pixels = cloth_mask > 0
|
| 465 |
+
overlay[cloth_pixels] = [0, 255, 0]
|
| 466 |
+
result[cloth_pixels] = cv2.addWeighted(
|
| 467 |
+
frame[cloth_pixels], 0.7, overlay[cloth_pixels], 0.3, 0
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
if self.gmm_heatmap is not None and self.gmm_heatmap.max() > 0:
|
| 471 |
+
height, width = result.shape[:2]
|
| 472 |
+
heatmap_resized = cv2.resize(self.gmm_heatmap, (width, height))
|
| 473 |
+
heatmap_colored = cv2.applyColorMap(
|
| 474 |
+
(heatmap_resized * 255).astype(np.uint8), cv2.COLORMAP_JET
|
| 475 |
+
)
|
| 476 |
+
significant = heatmap_resized > 0.1
|
| 477 |
+
result[significant] = cv2.addWeighted(
|
| 478 |
+
frame[significant], 0.6, heatmap_colored[significant], 0.4, 0
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
if tracks:
|
| 482 |
+
for track in tracks:
|
| 483 |
+
if track.is_confirmed():
|
| 484 |
+
bbox = track.to_ltrb()
|
| 485 |
+
cx, cy = int((bbox[0] + bbox[2])/2), int((bbox[1] + bbox[3])/2)
|
| 486 |
+
cv2.circle(result, (cx, cy), 4, (0, 0, 255), -1)
|
| 487 |
+
|
| 488 |
+
status_color = (0, 255, 0) if "ACTIVE" in cleaning_status else (150, 150, 150)
|
| 489 |
+
cv2.putText(result, cleaning_status, (20, 40),
|
| 490 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, status_color, 2)
|
| 491 |
+
|
| 492 |
+
return result
|
| 493 |
+
|
| 494 |
+
def get_latest_frame(self) -> np.ndarray:
|
| 495 |
+
"""Get latest processed frame."""
|
| 496 |
+
frame, _ = self.frame_buffer.get_latest()
|
| 497 |
+
return frame
|
| 498 |
+
|
| 499 |
+
def get_stats(self) -> dict:
|
| 500 |
+
"""Get stats."""
|
| 501 |
+
with self.frame_buffer.lock:
|
| 502 |
+
avg_time = np.mean(self.frame_times) if len(self.frame_times) > 0 else 0.033
|
| 503 |
+
fps = 1.0 / avg_time if avg_time > 0 else 0
|
| 504 |
+
return {
|
| 505 |
+
"buffered_frames": len(self.frame_buffer.frames),
|
| 506 |
+
"avg_fps": fps,
|
| 507 |
+
"queue_size": self.input_queue.qsize(),
|
| 508 |
+
"is_running": self.is_running
|
| 509 |
+
}
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
# ==================== FASTAPI APP ====================
|
| 513 |
+
|
| 514 |
+
app = FastAPI(title="Hygiene Monitor Live Stream", version="1.0.0")
|
| 515 |
+
|
| 516 |
+
# Active streams: {stream_id: {"monitor": LiveHygieneMonitor, "cap": VideoCapture, "thread": Thread}}
|
| 517 |
+
active_streams = {}
|
| 518 |
+
streams_lock = Lock()
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
def _get_model_files(camera_path: str) -> tuple:
|
| 522 |
+
"""Extract GMM and mask paths from camera directory."""
|
| 523 |
+
if not os.path.isdir(camera_path):
|
| 524 |
+
raise ValueError(f"Camera path not found: {camera_path}")
|
| 525 |
+
|
| 526 |
+
gmm_path = os.path.join(camera_path, "gmm_model.joblib")
|
| 527 |
+
mask_path = os.path.join(camera_path, "mask.png")
|
| 528 |
+
|
| 529 |
+
if not os.path.exists(gmm_path):
|
| 530 |
+
raise ValueError(f"GMM model not found: {gmm_path}")
|
| 531 |
+
if not os.path.exists(mask_path):
|
| 532 |
+
raise ValueError(f"Mask not found: {mask_path}")
|
| 533 |
+
|
| 534 |
+
return gmm_path, mask_path
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
def _stream_worker(stream_id: str, rtmp_url: str, gmm_path: str, mask_path: str):
|
| 538 |
+
"""Background worker for streaming."""
|
| 539 |
+
try:
|
| 540 |
+
monitor = LiveHygieneMonitor(
|
| 541 |
+
segformer_path="models/segformer_model",
|
| 542 |
+
max_buffer_frames=30
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
if not monitor.load_gmm_model(gmm_path):
|
| 546 |
+
logger.error(f"[{stream_id}] Failed to load GMM model")
|
| 547 |
+
return
|
| 548 |
+
|
| 549 |
+
if not monitor.load_table_mask(mask_path):
|
| 550 |
+
logger.error(f"[{stream_id}] Failed to load mask")
|
| 551 |
+
return
|
| 552 |
+
|
| 553 |
+
# === INITIALIZE ALERT MANAGER - ADD THIS ===
|
| 554 |
+
webhook_url = os.getenv("DISCORD_WEBHOOK_URL") # From environment
|
| 555 |
+
if webhook_url:
|
| 556 |
+
monitor.alert_manager = DiscordAlertManager(webhook_url=webhook_url)
|
| 557 |
+
monitor.current_camera_name = stream_id # Or pass from request
|
| 558 |
+
logger.info(f"[{stream_id}] Alert manager initialized")
|
| 559 |
+
|
| 560 |
+
monitor.start_processing()
|
| 561 |
+
|
| 562 |
+
cap = cv2.VideoCapture(rtmp_url)
|
| 563 |
+
if not cap.isOpened():
|
| 564 |
+
logger.error(f"[{stream_id}] Failed to connect to RTMP: {rtmp_url}")
|
| 565 |
+
monitor.stop_processing()
|
| 566 |
+
return
|
| 567 |
+
|
| 568 |
+
# Update active stream
|
| 569 |
+
with streams_lock:
|
| 570 |
+
if stream_id in active_streams:
|
| 571 |
+
active_streams[stream_id]["monitor"] = monitor
|
| 572 |
+
active_streams[stream_id]["cap"] = cap
|
| 573 |
+
active_streams[stream_id]["connected"] = True
|
| 574 |
+
|
| 575 |
+
frame_count = 0
|
| 576 |
+
logger.info(f"[{stream_id}] Connected to {rtmp_url}")
|
| 577 |
+
|
| 578 |
+
while True:
|
| 579 |
+
with streams_lock:
|
| 580 |
+
if stream_id not in active_streams or not active_streams[stream_id]["running"]:
|
| 581 |
+
break
|
| 582 |
+
|
| 583 |
+
ret, frame = cap.read()
|
| 584 |
+
if not ret:
|
| 585 |
+
logger.warning(f"[{stream_id}] RTMP connection lost, reconnecting...")
|
| 586 |
+
cap.release()
|
| 587 |
+
time.sleep(2)
|
| 588 |
+
cap = cv2.VideoCapture(rtmp_url)
|
| 589 |
+
continue
|
| 590 |
+
|
| 591 |
+
monitor.add_frame(frame)
|
| 592 |
+
frame_count += 1
|
| 593 |
+
|
| 594 |
+
if frame_count % 100 == 0:
|
| 595 |
+
stats = monitor.get_stats()
|
| 596 |
+
logger.info(f"[{stream_id}] Frames: {frame_count}, FPS: {stats['avg_fps']:.1f}")
|
| 597 |
+
|
| 598 |
+
except Exception as e:
|
| 599 |
+
logger.error(f"[{stream_id}] Stream error: {e}")
|
| 600 |
+
|
| 601 |
+
finally:
|
| 602 |
+
with streams_lock:
|
| 603 |
+
if stream_id in active_streams:
|
| 604 |
+
if active_streams[stream_id]["cap"]:
|
| 605 |
+
active_streams[stream_id]["cap"].release()
|
| 606 |
+
if active_streams[stream_id]["monitor"]:
|
| 607 |
+
active_streams[stream_id]["monitor"].stop_processing()
|
| 608 |
+
active_streams[stream_id]["connected"] = False
|
| 609 |
+
|
| 610 |
+
logger.info(f"[{stream_id}] Stream closed")
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
# ==================== ENDPOINTS ====================
|
| 614 |
+
|
| 615 |
+
@app.post("/stream/start")
|
| 616 |
+
async def start_stream(request: StreamStartRequest):
|
| 617 |
+
"""Start a new live stream."""
|
| 618 |
+
stream_id = f"stream_{int(time.time() * 1000)}"
|
| 619 |
+
|
| 620 |
+
try:
|
| 621 |
+
# Extract model files from camera path
|
| 622 |
+
gmm_path, mask_path = _get_model_files(request.camera_path)
|
| 623 |
+
|
| 624 |
+
# Create stream entry
|
| 625 |
+
with streams_lock:
|
| 626 |
+
active_streams[stream_id] = {
|
| 627 |
+
"running": True,
|
| 628 |
+
"connected": False,
|
| 629 |
+
"monitor": None,
|
| 630 |
+
"cap": None,
|
| 631 |
+
"thread": None,
|
| 632 |
+
"camera_path": request.camera_path
|
| 633 |
+
}
|
| 634 |
+
|
| 635 |
+
# Start background worker thread
|
| 636 |
+
thread = Thread(
|
| 637 |
+
target=_stream_worker,
|
| 638 |
+
args=(stream_id, request.rtmp_input_url, gmm_path, mask_path),
|
| 639 |
+
daemon=True
|
| 640 |
+
)
|
| 641 |
+
thread.start()
|
| 642 |
+
|
| 643 |
+
with streams_lock:
|
| 644 |
+
active_streams[stream_id]["thread"] = thread
|
| 645 |
+
|
| 646 |
+
logger.info(f"Stream {stream_id} started")
|
| 647 |
+
return {
|
| 648 |
+
"stream_id": stream_id,
|
| 649 |
+
"status": "starting",
|
| 650 |
+
"message": f"Stream {stream_id} is starting, will connect to {request.rtmp_input_url}"
|
| 651 |
+
}
|
| 652 |
+
|
| 653 |
+
except Exception as e:
|
| 654 |
+
logger.error(f"Failed to start stream: {e}")
|
| 655 |
+
raise HTTPException(status_code=400, detail=str(e))
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
@app.post("/stream/stop")
|
| 659 |
+
async def stop_stream(request: StreamStopRequest):
|
| 660 |
+
"""Stop a live stream."""
|
| 661 |
+
stream_id = request.stream_id
|
| 662 |
+
|
| 663 |
+
with streams_lock:
|
| 664 |
+
if stream_id not in active_streams:
|
| 665 |
+
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 666 |
+
|
| 667 |
+
active_streams[stream_id]["running"] = False
|
| 668 |
+
|
| 669 |
+
logger.info(f"Stream {stream_id} stop requested")
|
| 670 |
+
return {"stream_id": stream_id, "status": "stopping"}
|
| 671 |
+
|
| 672 |
+
|
| 673 |
+
@app.get("/stream/status/{stream_id}")
|
| 674 |
+
async def get_stream_status(stream_id: str):
|
| 675 |
+
"""Get stream status."""
|
| 676 |
+
with streams_lock:
|
| 677 |
+
if stream_id not in active_streams:
|
| 678 |
+
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 679 |
+
|
| 680 |
+
stream_data = active_streams[stream_id]
|
| 681 |
+
monitor = stream_data["monitor"]
|
| 682 |
+
|
| 683 |
+
stats = monitor.get_stats() if monitor else {}
|
| 684 |
+
|
| 685 |
+
return {
|
| 686 |
+
"stream_id": stream_id,
|
| 687 |
+
"connected": stream_data["connected"],
|
| 688 |
+
"running": stream_data["running"],
|
| 689 |
+
"camera_path": stream_data["camera_path"],
|
| 690 |
+
"fps": stats.get("avg_fps", 0),
|
| 691 |
+
"buffered_frames": stats.get("buffered_frames", 0),
|
| 692 |
+
"queue_size": stats.get("queue_size", 0)
|
| 693 |
+
}
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
@app.get("/stream/video/{stream_id}")
|
| 697 |
+
async def stream_video(stream_id: str):
|
| 698 |
+
"""Stream video frames via MJPEG."""
|
| 699 |
+
with streams_lock:
|
| 700 |
+
if stream_id not in active_streams:
|
| 701 |
+
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 702 |
+
|
| 703 |
+
monitor = active_streams[stream_id]["monitor"]
|
| 704 |
+
|
| 705 |
+
if not monitor:
|
| 706 |
+
raise HTTPException(status_code=503, detail="Monitor not ready")
|
| 707 |
+
|
| 708 |
+
async def frame_generator():
|
| 709 |
+
while True:
|
| 710 |
+
with streams_lock:
|
| 711 |
+
if stream_id not in active_streams or not active_streams[stream_id]["running"]:
|
| 712 |
+
break
|
| 713 |
+
|
| 714 |
+
frame = monitor.get_latest_frame()
|
| 715 |
+
if frame is not None:
|
| 716 |
+
_, buffer = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 80])
|
| 717 |
+
yield (b'--frame\r\n'
|
| 718 |
+
b'Content-Type: image/jpeg\r\n'
|
| 719 |
+
b'Content-Length: ' + str(len(buffer)).encode() + b'\r\n\r\n'
|
| 720 |
+
+ buffer.tobytes() + b'\r\n')
|
| 721 |
+
else:
|
| 722 |
+
await asyncio.sleep(0.01)
|
| 723 |
+
|
| 724 |
+
return StreamingResponse(
|
| 725 |
+
frame_generator(),
|
| 726 |
+
media_type="multipart/x-mixed-replace; boundary=frame"
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
@app.get("/streams")
|
| 731 |
+
async def list_streams():
|
| 732 |
+
"""List all active streams."""
|
| 733 |
+
with streams_lock:
|
| 734 |
+
streams_list = []
|
| 735 |
+
for stream_id, data in active_streams.items():
|
| 736 |
+
monitor = data["monitor"]
|
| 737 |
+
stats = monitor.get_stats() if monitor else {}
|
| 738 |
+
|
| 739 |
+
streams_list.append({
|
| 740 |
+
"stream_id": stream_id,
|
| 741 |
+
"connected": data["connected"],
|
| 742 |
+
"running": data["running"],
|
| 743 |
+
"camera_path": data["camera_path"],
|
| 744 |
+
"fps": stats.get("avg_fps", 0),
|
| 745 |
+
"buffered_frames": stats.get("buffered_frames", 0)
|
| 746 |
+
})
|
| 747 |
+
|
| 748 |
+
return {"total_streams": len(streams_list), "streams": streams_list}
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
@app.post("/stream/restart/{stream_id}")
|
| 752 |
+
async def restart_stream(stream_id: str):
|
| 753 |
+
"""Restart a stream."""
|
| 754 |
+
with streams_lock:
|
| 755 |
+
if stream_id not in active_streams:
|
| 756 |
+
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 757 |
+
|
| 758 |
+
active_streams[stream_id]["running"] = False
|
| 759 |
+
|
| 760 |
+
await asyncio.sleep(2)
|
| 761 |
+
|
| 762 |
+
with streams_lock:
|
| 763 |
+
data = active_streams[stream_id]
|
| 764 |
+
data["running"] = True
|
| 765 |
+
|
| 766 |
+
return {"stream_id": stream_id, "status": "restarting"}
|
| 767 |
+
|
| 768 |
+
@app.post("/camera/extract_frame")
|
| 769 |
+
async def extract_frame_from_rtmp(request: dict):
|
| 770 |
+
"""
|
| 771 |
+
Extract a single frame from RTMP stream for corner selection.
|
| 772 |
+
|
| 773 |
+
Request body:
|
| 774 |
+
{
|
| 775 |
+
"rtmp_url": "rtmp://192.168.1.100:1935/live/kitchen",
|
| 776 |
+
"camera_name": "kitchen"
|
| 777 |
+
}
|
| 778 |
+
|
| 779 |
+
Returns:
|
| 780 |
+
{
|
| 781 |
+
"success": true,
|
| 782 |
+
"frame_base64": "base64_encoded_image",
|
| 783 |
+
"frame_dimensions": {"width": 1920, "height": 1080}
|
| 784 |
+
}
|
| 785 |
+
"""
|
| 786 |
+
try:
|
| 787 |
+
rtmp_url = request.get("rtmp_url")
|
| 788 |
+
camera_name = request.get("camera_name")
|
| 789 |
+
|
| 790 |
+
if not rtmp_url or not camera_name:
|
| 791 |
+
raise HTTPException(status_code=400, detail="Missing rtmp_url or camera_name")
|
| 792 |
+
|
| 793 |
+
# Connect to RTMP stream
|
| 794 |
+
cap = cv2.VideoCapture(rtmp_url)
|
| 795 |
+
if not cap.isOpened():
|
| 796 |
+
raise HTTPException(status_code=400, detail=f"Failed to connect to RTMP: {rtmp_url}")
|
| 797 |
+
|
| 798 |
+
# Read first frame
|
| 799 |
+
ret, frame = cap.read()
|
| 800 |
+
cap.release()
|
| 801 |
+
|
| 802 |
+
if not ret:
|
| 803 |
+
raise HTTPException(status_code=400, detail="Failed to read frame from RTMP stream")
|
| 804 |
+
import base64
|
| 805 |
+
# Convert frame to base64 for frontend display
|
| 806 |
+
_, buffer = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 95])
|
| 807 |
+
frame_base64 = base64.b64encode(buffer).decode('utf-8')
|
| 808 |
+
|
| 809 |
+
# Store frame temporarily for training (optional - could store in memory cache)
|
| 810 |
+
temp_dir = "temp_frames"
|
| 811 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 812 |
+
temp_frame_path = os.path.join(temp_dir, f"{camera_name}_reference.jpg")
|
| 813 |
+
cv2.imwrite(temp_frame_path, frame)
|
| 814 |
+
|
| 815 |
+
return {
|
| 816 |
+
"success": True,
|
| 817 |
+
"frame_base64": frame_base64,
|
| 818 |
+
"frame_dimensions": {
|
| 819 |
+
"width": frame.shape[1],
|
| 820 |
+
"height": frame.shape[0]
|
| 821 |
+
},
|
| 822 |
+
"temp_frame_path": temp_frame_path
|
| 823 |
+
}
|
| 824 |
+
|
| 825 |
+
except Exception as e:
|
| 826 |
+
logger.error(f"Extract frame error: {e}")
|
| 827 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
@app.post("/camera/train_gmm")
|
| 831 |
+
async def train_gmm_from_rtmp(request: dict):
|
| 832 |
+
"""
|
| 833 |
+
Train GMM model from RTMP stream using N corner points (minimum 4).
|
| 834 |
+
|
| 835 |
+
Request body:
|
| 836 |
+
{
|
| 837 |
+
"rtmp_url": "rtmp://192.168.1.100:1935/live/kitchen",
|
| 838 |
+
"camera_name": "kitchen",
|
| 839 |
+
"corner_points": [
|
| 840 |
+
{"x": 100, "y": 50},
|
| 841 |
+
{"x": 400, "y": 45},
|
| 842 |
+
{"x": 700, "y": 55},
|
| 843 |
+
{"x": 800, "y": 60},
|
| 844 |
+
{"x": 850, "y": 300},
|
| 845 |
+
{"x": 850, "y": 600},
|
| 846 |
+
{"x": 400, "y": 620},
|
| 847 |
+
{"x": 50, "y": 580},
|
| 848 |
+
{"x": 45, "y": 300}
|
| 849 |
+
], // Can be 4+ points for curved tables
|
| 850 |
+
"max_frames": 250,
|
| 851 |
+
"use_perspective_warp": false // NEW: Set false for non-rectangular tables
|
| 852 |
+
}
|
| 853 |
+
"""
|
| 854 |
+
try:
|
| 855 |
+
rtmp_url = request.get("rtmp_url")
|
| 856 |
+
camera_name = request.get("camera_name")
|
| 857 |
+
corner_points = request.get("corner_points")
|
| 858 |
+
max_frames = request.get("max_frames", 250)
|
| 859 |
+
use_perspective_warp = request.get("use_perspective_warp", False) # NEW
|
| 860 |
+
|
| 861 |
+
# Validation
|
| 862 |
+
if not rtmp_url or not camera_name or not corner_points:
|
| 863 |
+
raise HTTPException(status_code=400, detail="Missing required parameters")
|
| 864 |
+
|
| 865 |
+
if len(corner_points) < 4:
|
| 866 |
+
raise HTTPException(status_code=400, detail="Minimum 4 corner points required")
|
| 867 |
+
|
| 868 |
+
logger.info(f"Starting GMM training for camera: {camera_name} with {len(corner_points)} points")
|
| 869 |
+
|
| 870 |
+
# ===== STEP 1: Connect to RTMP and capture frames =====
|
| 871 |
+
cap = cv2.VideoCapture(rtmp_url)
|
| 872 |
+
if not cap.isOpened():
|
| 873 |
+
raise HTTPException(status_code=400, detail=f"Failed to connect to RTMP: {rtmp_url}")
|
| 874 |
+
|
| 875 |
+
ret, first_frame = cap.read()
|
| 876 |
+
if not ret:
|
| 877 |
+
cap.release()
|
| 878 |
+
raise HTTPException(status_code=400, detail="Failed to read from RTMP stream")
|
| 879 |
+
|
| 880 |
+
h, w = first_frame.shape[:2]
|
| 881 |
+
|
| 882 |
+
# ===== STEP 2: Create polygon mask from N points =====
|
| 883 |
+
pts_polygon = np.array([
|
| 884 |
+
[point['x'], point['y']] for point in corner_points
|
| 885 |
+
], dtype=np.int32)
|
| 886 |
+
|
| 887 |
+
# Create binary mask for the table area
|
| 888 |
+
table_mask = np.zeros((h, w), dtype=np.uint8)
|
| 889 |
+
cv2.fillPoly(table_mask, [pts_polygon], 255)
|
| 890 |
+
|
| 891 |
+
# ===== STEP 3: Decide transformation strategy =====
|
| 892 |
+
import tempfile
|
| 893 |
+
temp_dir = tempfile.mkdtemp()
|
| 894 |
+
frame_count = 0
|
| 895 |
+
|
| 896 |
+
if use_perspective_warp and len(corner_points) == 4:
|
| 897 |
+
# ===== STRATEGY A: Perspective warp (rectangular tables only) =====
|
| 898 |
+
logger.info("Using perspective warp for rectangular table")
|
| 899 |
+
|
| 900 |
+
pts_src = np.array([
|
| 901 |
+
[corner_points[0]['x'], corner_points[0]['y']],
|
| 902 |
+
[corner_points[1]['x'], corner_points[1]['y']],
|
| 903 |
+
[corner_points[2]['x'], corner_points[2]['y']],
|
| 904 |
+
[corner_points[3]['x'], corner_points[3]['y']]
|
| 905 |
+
], dtype=np.float32)
|
| 906 |
+
|
| 907 |
+
pts_dst = np.array([
|
| 908 |
+
[0, 0], [w, 0], [w, h], [0, h]
|
| 909 |
+
], dtype=np.float32)
|
| 910 |
+
|
| 911 |
+
matrix = cv2.getPerspectiveTransform(pts_src, pts_dst)
|
| 912 |
+
|
| 913 |
+
# Capture and warp frames
|
| 914 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
| 915 |
+
while frame_count < max_frames:
|
| 916 |
+
ret, frame = cap.read()
|
| 917 |
+
if not ret:
|
| 918 |
+
break
|
| 919 |
+
|
| 920 |
+
warped = cv2.warpPerspective(frame, matrix, (w, h))
|
| 921 |
+
frame_path = os.path.join(temp_dir, f'b{frame_count:05d}.png')
|
| 922 |
+
cv2.imwrite(frame_path, warped)
|
| 923 |
+
frame_count += 1
|
| 924 |
+
|
| 925 |
+
if frame_count % 50 == 0:
|
| 926 |
+
logger.info(f"Captured {frame_count}/{max_frames} frames")
|
| 927 |
+
|
| 928 |
+
# For warped images, mask should be full frame (already aligned)
|
| 929 |
+
final_mask = np.ones((h, w), dtype=np.uint8) * 255
|
| 930 |
+
|
| 931 |
+
else:
|
| 932 |
+
# ===== STRATEGY B: Direct masking (curved/complex tables) =====
|
| 933 |
+
logger.info(f"Using direct masking for {len(corner_points)}-point polygon (curved table)")
|
| 934 |
+
|
| 935 |
+
# Capture frames WITHOUT warping, apply mask during inference
|
| 936 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
| 937 |
+
while frame_count < max_frames:
|
| 938 |
+
ret, frame = cap.read()
|
| 939 |
+
if not ret:
|
| 940 |
+
break
|
| 941 |
+
|
| 942 |
+
# Apply mask to frame (zero out outside table area)
|
| 943 |
+
masked_frame = cv2.bitwise_and(frame, frame, mask=table_mask)
|
| 944 |
+
|
| 945 |
+
frame_path = os.path.join(temp_dir, f'b{frame_count:05d}.png')
|
| 946 |
+
cv2.imwrite(frame_path, masked_frame)
|
| 947 |
+
frame_count += 1
|
| 948 |
+
|
| 949 |
+
if frame_count % 50 == 0:
|
| 950 |
+
logger.info(f"Captured {frame_count}/{max_frames} frames")
|
| 951 |
+
|
| 952 |
+
# Use original polygon mask
|
| 953 |
+
final_mask = table_mask
|
| 954 |
+
|
| 955 |
+
cap.release()
|
| 956 |
+
|
| 957 |
+
if frame_count == 0:
|
| 958 |
+
raise HTTPException(status_code=400, detail="No frames captured")
|
| 959 |
+
|
| 960 |
+
logger.info(f"Captured {frame_count} frames, starting GMM training...")
|
| 961 |
+
|
| 962 |
+
# ===== STEP 4: Train GMM =====
|
| 963 |
+
from GMM import GMM
|
| 964 |
+
gmm = GMM(temp_dir, frame_count, alpha=0.05)
|
| 965 |
+
gmm.train(K=4)
|
| 966 |
+
logger.info("GMM training complete")
|
| 967 |
+
|
| 968 |
+
# ===== STEP 5: Save artifacts =====
|
| 969 |
+
camera_path = os.path.join("models", camera_name)
|
| 970 |
+
os.makedirs(camera_path, exist_ok=True)
|
| 971 |
+
|
| 972 |
+
# 1. Save GMM model
|
| 973 |
+
gmm_path = os.path.join(camera_path, "gmm_model.joblib")
|
| 974 |
+
gmm.save_model(gmm_path)
|
| 975 |
+
|
| 976 |
+
# 2. Save mask (polygon-based, not rectangular)
|
| 977 |
+
mask_path = os.path.join(camera_path, "mask.png")
|
| 978 |
+
cv2.imwrite(mask_path, final_mask)
|
| 979 |
+
logger.info(f"Saved {len(corner_points)}-point polygon mask to {mask_path}")
|
| 980 |
+
|
| 981 |
+
# 3. Create thumbnail with polygon overlay
|
| 982 |
+
thumb_frame = first_frame.copy()
|
| 983 |
+
|
| 984 |
+
# Draw filled polygon with transparency
|
| 985 |
+
overlay = thumb_frame.copy()
|
| 986 |
+
cv2.fillPoly(overlay, [pts_polygon], (0, 255, 0))
|
| 987 |
+
cv2.addWeighted(thumb_frame, 0.7, overlay, 0.3, 0, thumb_frame)
|
| 988 |
+
|
| 989 |
+
# Draw polygon border
|
| 990 |
+
cv2.polylines(thumb_frame, [pts_polygon], True, (0, 255, 0), 3)
|
| 991 |
+
|
| 992 |
+
# Draw corner points with numbers
|
| 993 |
+
colors = [
|
| 994 |
+
(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
|
| 995 |
+
(255, 0, 255), (0, 255, 255), (128, 0, 128), (255, 128, 0)
|
| 996 |
+
]
|
| 997 |
+
|
| 998 |
+
for i, point in enumerate(corner_points):
|
| 999 |
+
x, y = point['x'], point['y']
|
| 1000 |
+
color = colors[i % len(colors)]
|
| 1001 |
+
|
| 1002 |
+
cv2.circle(thumb_frame, (x, y), 8, color, -1)
|
| 1003 |
+
cv2.circle(thumb_frame, (x, y), 10, (255, 255, 255), 2)
|
| 1004 |
+
|
| 1005 |
+
# Point number
|
| 1006 |
+
cv2.putText(thumb_frame, str(i+1), (x+15, y),
|
| 1007 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
|
| 1008 |
+
|
| 1009 |
+
# Camera name label
|
| 1010 |
+
cv2.putText(thumb_frame, camera_name, (30, 50),
|
| 1011 |
+
cv2.FONT_HERSHEY_DUPLEX, 1.5, (255, 255, 255), 3)
|
| 1012 |
+
cv2.putText(thumb_frame, camera_name, (30, 50),
|
| 1013 |
+
cv2.FONT_HERSHEY_DUPLEX, 1.5, (0, 255, 0), 2)
|
| 1014 |
+
|
| 1015 |
+
# Add point count indicator
|
| 1016 |
+
cv2.putText(thumb_frame, f"{len(corner_points)} points", (30, 90),
|
| 1017 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
|
| 1018 |
+
|
| 1019 |
+
thumb_path = os.path.join(camera_path, "thumb.png")
|
| 1020 |
+
cv2.imwrite(thumb_path, thumb_frame)
|
| 1021 |
+
|
| 1022 |
+
# 4. Save polygon metadata (NEW - for reconstruction)
|
| 1023 |
+
metadata = {
|
| 1024 |
+
"camera_name": camera_name,
|
| 1025 |
+
"num_points": len(corner_points),
|
| 1026 |
+
"corner_points": corner_points,
|
| 1027 |
+
"frame_dimensions": {"width": w, "height": h},
|
| 1028 |
+
"use_perspective_warp": use_perspective_warp,
|
| 1029 |
+
"training_date": datetime.now().isoformat()
|
| 1030 |
+
}
|
| 1031 |
+
|
| 1032 |
+
import json
|
| 1033 |
+
metadata_path = os.path.join(camera_path, "metadata.json")
|
| 1034 |
+
with open(metadata_path, 'w') as f:
|
| 1035 |
+
json.dump(metadata, f, indent=2)
|
| 1036 |
+
|
| 1037 |
+
logger.info(f"Saved metadata to {metadata_path}")
|
| 1038 |
+
|
| 1039 |
+
# Cleanup
|
| 1040 |
+
import shutil
|
| 1041 |
+
shutil.rmtree(temp_dir)
|
| 1042 |
+
|
| 1043 |
+
logger.info(f"✅ Camera '{camera_name}' training complete with {len(corner_points)}-point polygon!")
|
| 1044 |
+
|
| 1045 |
+
return {
|
| 1046 |
+
"success": True,
|
| 1047 |
+
"camera_name": camera_name,
|
| 1048 |
+
"camera_path": camera_path,
|
| 1049 |
+
"frames_captured": frame_count,
|
| 1050 |
+
"polygon_points": len(corner_points),
|
| 1051 |
+
"use_perspective_warp": use_perspective_warp,
|
| 1052 |
+
"model_files": {
|
| 1053 |
+
"gmm_model": gmm_path,
|
| 1054 |
+
"mask": mask_path,
|
| 1055 |
+
"thumbnail": thumb_path,
|
| 1056 |
+
"metadata": metadata_path
|
| 1057 |
+
}
|
| 1058 |
+
}
|
| 1059 |
+
|
| 1060 |
+
except Exception as e:
|
| 1061 |
+
logger.error(f"GMM training error: {e}")
|
| 1062 |
+
import traceback
|
| 1063 |
+
logger.error(traceback.format_exc())
|
| 1064 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 1065 |
+
|
| 1066 |
+
|
| 1067 |
+
@app.get("/cameras")
|
| 1068 |
+
async def list_cameras():
|
| 1069 |
+
"""
|
| 1070 |
+
List all trained cameras with their metadata.
|
| 1071 |
+
|
| 1072 |
+
Returns:
|
| 1073 |
+
{
|
| 1074 |
+
"cameras": [
|
| 1075 |
+
{
|
| 1076 |
+
"name": "kitchen",
|
| 1077 |
+
"path": "models/kitchen",
|
| 1078 |
+
"thumbnail": "models/kitchen/thumb.png",
|
| 1079 |
+
"has_gmm_model": true,
|
| 1080 |
+
"has_mask": true
|
| 1081 |
+
}
|
| 1082 |
+
]
|
| 1083 |
+
}
|
| 1084 |
+
"""
|
| 1085 |
+
try:
|
| 1086 |
+
cameras = []
|
| 1087 |
+
models_dir = "models"
|
| 1088 |
+
|
| 1089 |
+
if not os.path.exists(models_dir):
|
| 1090 |
+
return {"cameras": []}
|
| 1091 |
+
|
| 1092 |
+
for camera_name in os.listdir(models_dir):
|
| 1093 |
+
camera_path = os.path.join(models_dir, camera_name)
|
| 1094 |
+
|
| 1095 |
+
if not os.path.isdir(camera_path):
|
| 1096 |
+
continue
|
| 1097 |
+
|
| 1098 |
+
gmm_path = os.path.join(camera_path, "gmm_model.joblib")
|
| 1099 |
+
mask_path = os.path.join(camera_path, "mask.png")
|
| 1100 |
+
thumb_path = os.path.join(camera_path, "thumb.png")
|
| 1101 |
+
|
| 1102 |
+
cameras.append({
|
| 1103 |
+
"name": camera_name,
|
| 1104 |
+
"path": camera_path,
|
| 1105 |
+
"thumbnail": thumb_path if os.path.exists(thumb_path) else None,
|
| 1106 |
+
"has_gmm_model": os.path.exists(gmm_path),
|
| 1107 |
+
"has_mask": os.path.exists(mask_path)
|
| 1108 |
+
})
|
| 1109 |
+
|
| 1110 |
+
return {"cameras": cameras}
|
| 1111 |
+
|
| 1112 |
+
except Exception as e:
|
| 1113 |
+
logger.error(f"List cameras error: {e}")
|
| 1114 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
@app.delete("/camera/{camera_name}")
|
| 1118 |
+
async def delete_camera(camera_name: str):
|
| 1119 |
+
"""
|
| 1120 |
+
Delete a trained camera and all its files.
|
| 1121 |
+
"""
|
| 1122 |
+
try:
|
| 1123 |
+
camera_path = os.path.join("models", camera_name)
|
| 1124 |
+
|
| 1125 |
+
if not os.path.exists(camera_path):
|
| 1126 |
+
raise HTTPException(status_code=404, detail=f"Camera '{camera_name}' not found")
|
| 1127 |
+
|
| 1128 |
+
import shutil
|
| 1129 |
+
shutil.rmtree(camera_path)
|
| 1130 |
+
|
| 1131 |
+
logger.info(f"Deleted camera: {camera_name}")
|
| 1132 |
+
|
| 1133 |
+
return {
|
| 1134 |
+
"success": True,
|
| 1135 |
+
"message": f"Camera '{camera_name}' deleted successfully"
|
| 1136 |
+
}
|
| 1137 |
+
|
| 1138 |
+
except Exception as e:
|
| 1139 |
+
logger.error(f"Delete camera error: {e}")
|
| 1140 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 1141 |
+
|
| 1142 |
+
|
| 1143 |
+
@app.get("/health")
|
| 1144 |
+
async def health_check():
|
| 1145 |
+
"""Health check endpoint."""
|
| 1146 |
+
with streams_lock:
|
| 1147 |
+
stream_count = len(active_streams)
|
| 1148 |
+
|
| 1149 |
+
return {
|
| 1150 |
+
"status": "healthy",
|
| 1151 |
+
"active_streams": stream_count,
|
| 1152 |
+
"timestamp": datetime.now().isoformat()
|
| 1153 |
+
}
|
| 1154 |
+
|
| 1155 |
+
|
| 1156 |
+
if __name__ == "__main__":
|
| 1157 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python
|
| 2 |
+
opencv-contrib-python
|
| 3 |
+
joblib
|
| 4 |
+
scikit-learn
|
| 5 |
+
numpy==1.24.3
|
| 6 |
+
#torchvision==0.15.2
|
| 7 |
+
ultralytics
|
| 8 |
+
gradio
|
| 9 |
+
Pillow
|
| 10 |
+
matplotlib==3.7.2
|
| 11 |
+
pathlib
|
| 12 |
+
python-dateutil==2.8.2
|
| 13 |
+
|
| 14 |
+
# Additional dependencies
|
| 15 |
+
pyyaml>=6.0
|
| 16 |
+
requests>=2.31.0
|
| 17 |
+
scipy>=1.11.0
|
| 18 |
+
pandas>=2.0.3
|
| 19 |
+
tqdm>=4.65.0
|
| 20 |
+
seaborn>=0.12.2
|
| 21 |
+
|
| 22 |
+
# For better video codec support
|
| 23 |
+
imageio
|
| 24 |
+
imageio-ffmpeg
|
| 25 |
+
|
| 26 |
+
# System utilities
|
| 27 |
+
psutil>=5.9.0
|
| 28 |
+
plotly
|
| 29 |
+
torch
|
send_discord.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import logging
|
| 7 |
+
import base64
|
| 8 |
+
import io
|
| 9 |
+
import json
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class DiscordAlertManager:
|
| 15 |
+
"""Manages Discord webhook alerts for hygiene violations."""
|
| 16 |
+
|
| 17 |
+
def __init__(self, discord_config: dict):
|
| 18 |
+
"""
|
| 19 |
+
discord_config: {
|
| 20 |
+
'webhook_url': 'your_webhook_url'
|
| 21 |
+
}
|
| 22 |
+
"""
|
| 23 |
+
self.webhook_url = discord_config['webhook_url']
|
| 24 |
+
self.alert_cooldown = 300
|
| 25 |
+
self.last_alert_time = None
|
| 26 |
+
self.dirty_start_time = None
|
| 27 |
+
self.dirty_threshold_seconds = 10
|
| 28 |
+
self.dirty_coverage_threshold = 0.06
|
| 29 |
+
|
| 30 |
+
def should_send_alert(self, dirty_coverage: float, current_time: datetime) -> bool:
|
| 31 |
+
"""Same logic as before"""
|
| 32 |
+
if dirty_coverage < self.dirty_coverage_threshold:
|
| 33 |
+
self.dirty_start_time = None
|
| 34 |
+
return False
|
| 35 |
+
|
| 36 |
+
if self.dirty_start_time is None:
|
| 37 |
+
self.dirty_start_time = current_time
|
| 38 |
+
return False
|
| 39 |
+
|
| 40 |
+
dirty_duration = (current_time - self.dirty_start_time).total_seconds()
|
| 41 |
+
if dirty_duration < self.dirty_threshold_seconds:
|
| 42 |
+
return False
|
| 43 |
+
|
| 44 |
+
if self.last_alert_time is not None:
|
| 45 |
+
time_since_last = (current_time - self.last_alert_time).total_seconds()
|
| 46 |
+
if time_since_last < self.alert_cooldown:
|
| 47 |
+
return False
|
| 48 |
+
|
| 49 |
+
return True
|
| 50 |
+
|
| 51 |
+
def generate_heatmap_image(self, frame: np.ndarray, gmm_heatmap: np.ndarray,
|
| 52 |
+
output_path: str) -> str:
|
| 53 |
+
"""Generate heatmap visualization"""
|
| 54 |
+
result = frame.copy()
|
| 55 |
+
height, width = result.shape[:2]
|
| 56 |
+
|
| 57 |
+
if gmm_heatmap.shape != (height, width):
|
| 58 |
+
heatmap_resized = cv2.resize(gmm_heatmap, (width, height))
|
| 59 |
+
else:
|
| 60 |
+
heatmap_resized = gmm_heatmap
|
| 61 |
+
|
| 62 |
+
heatmap_colored = cv2.applyColorMap(
|
| 63 |
+
(heatmap_resized * 255).astype(np.uint8),
|
| 64 |
+
cv2.COLORMAP_JET
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
alpha = 0.5
|
| 68 |
+
result = cv2.addWeighted(frame, 1 - alpha, heatmap_colored, alpha, 0)
|
| 69 |
+
|
| 70 |
+
# Add info panel
|
| 71 |
+
avg_dirt = np.mean(heatmap_resized)
|
| 72 |
+
max_dirt = np.max(heatmap_resized)
|
| 73 |
+
dirty_pixels = np.sum(heatmap_resized > 0.60)
|
| 74 |
+
coverage_percent = (dirty_pixels / heatmap_resized.size) * 100
|
| 75 |
+
|
| 76 |
+
cv2.rectangle(result, (10, 10), (400, 120), (0, 0, 0), -1)
|
| 77 |
+
cv2.rectangle(result, (10, 10), (400, 120), (255, 255, 255), 2)
|
| 78 |
+
|
| 79 |
+
info_text = [
|
| 80 |
+
f"Average Dirt: {avg_dirt:.2f}",
|
| 81 |
+
f"Maximum Dirt: {max_dirt:.2f}",
|
| 82 |
+
f"Red Zone: {coverage_percent:.1f}%",
|
| 83 |
+
f"Time: {datetime.now().strftime('%H:%M:%S')}"
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
for i, text in enumerate(info_text):
|
| 87 |
+
cv2.putText(result, text, (20, 35 + i * 25),
|
| 88 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1)
|
| 89 |
+
|
| 90 |
+
cv2.imwrite(output_path, result)
|
| 91 |
+
return output_path
|
| 92 |
+
|
| 93 |
+
def send_alert(self, camera_name: str, dirty_coverage: float,
|
| 94 |
+
dirty_duration: int, frame: np.ndarray,
|
| 95 |
+
gmm_heatmap: np.ndarray) -> bool:
|
| 96 |
+
"""Send Discord webhook alert with embedded image"""
|
| 97 |
+
try:
|
| 98 |
+
# Generate image
|
| 99 |
+
temp_image_path = f"tmp/heatmap_{datetime.now().timestamp()}.png"
|
| 100 |
+
self.generate_heatmap_image(frame, gmm_heatmap, temp_image_path)
|
| 101 |
+
|
| 102 |
+
# Calculate duration
|
| 103 |
+
duration_mins = dirty_duration // 60
|
| 104 |
+
duration_secs = dirty_duration % 60
|
| 105 |
+
|
| 106 |
+
# Create rich embed
|
| 107 |
+
embed = {
|
| 108 |
+
"title": "🚨 CLEANING ALERT",
|
| 109 |
+
"description": f"**{camera_name}** requires immediate attention!",
|
| 110 |
+
"color": 15158332, # Red color (#E74C3C)
|
| 111 |
+
"fields": [
|
| 112 |
+
{
|
| 113 |
+
"name": "📍 Location",
|
| 114 |
+
"value": camera_name,
|
| 115 |
+
"inline": True
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"name": "🔴 Coverage",
|
| 119 |
+
"value": f"{dirty_coverage*100:.1f}%",
|
| 120 |
+
"inline": True
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"name": "⏱ Duration",
|
| 124 |
+
"value": f"{duration_mins}m {duration_secs}s",
|
| 125 |
+
"inline": True
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"name": "⚠️ Action Required",
|
| 129 |
+
"value": "Table has exceeded cleanliness threshold and needs cleaning.",
|
| 130 |
+
"inline": False
|
| 131 |
+
}
|
| 132 |
+
],
|
| 133 |
+
"footer": {
|
| 134 |
+
"text": "Kitchen Hygiene Monitoring System"
|
| 135 |
+
},
|
| 136 |
+
"timestamp": datetime.utcnow().isoformat()
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
# Prepare webhook payload with embeds
|
| 140 |
+
payload = {
|
| 141 |
+
"username": "Hygiene Monitor Bot",
|
| 142 |
+
"avatar_url": "https://cdn-icons-png.flaticon.com/512/3699/3699516.png",
|
| 143 |
+
"embeds": [embed]
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
# Read the image file
|
| 147 |
+
with open(temp_image_path, 'rb') as f:
|
| 148 |
+
image_data = f.read()
|
| 149 |
+
|
| 150 |
+
# Prepare the multipart form data
|
| 151 |
+
files = {
|
| 152 |
+
'payload_json': (None, json.dumps(payload), 'application/json'),
|
| 153 |
+
'file': ('heatmap.png', image_data, 'image/png')
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
# Send the request
|
| 157 |
+
response = requests.post(self.webhook_url, files=files)
|
| 158 |
+
|
| 159 |
+
if response.status_code in [200, 204]:
|
| 160 |
+
self.last_alert_time = datetime.now()
|
| 161 |
+
logger.info(f"✅ Discord alert sent for {camera_name}")
|
| 162 |
+
Path(temp_image_path).unlink(missing_ok=True)
|
| 163 |
+
return True
|
| 164 |
+
else:
|
| 165 |
+
logger.error(f"Discord webhook error: {response.status_code} - {response.text}")
|
| 166 |
+
return False
|
| 167 |
+
|
| 168 |
+
except Exception as e:
|
| 169 |
+
logger.error(f"Failed to send Discord alert: {str(e)}")
|
| 170 |
+
import traceback
|
| 171 |
+
logger.error(traceback.format_exc())
|
| 172 |
+
return False
|