Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,1157 +1,1157 @@
|
|
| 1 |
-
import cv2
|
| 2 |
-
import torch
|
| 3 |
-
import numpy as np
|
| 4 |
-
from collections import deque
|
| 5 |
-
from threading import Thread, Lock
|
| 6 |
-
from queue import Queue
|
| 7 |
-
import time
|
| 8 |
-
import logging
|
| 9 |
-
import os
|
| 10 |
-
from datetime import datetime
|
| 11 |
-
from PIL import Image
|
| 12 |
-
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
|
| 13 |
-
from fastapi import FastAPI, HTTPException
|
| 14 |
-
from fastapi.responses import FileResponse, StreamingResponse
|
| 15 |
-
import asyncio
|
| 16 |
-
import uvicorn
|
| 17 |
-
from pydantic import BaseModel
|
| 18 |
-
from typing import Optional
|
| 19 |
-
import requests
|
| 20 |
-
from datetime import datetime, timedelta
|
| 21 |
-
|
| 22 |
-
# ===== IMPORT THE DISCORD ALERT MANAGER =====
|
| 23 |
-
from send_discord import DiscordAlertManager
|
| 24 |
-
|
| 25 |
-
logging.basicConfig(level=logging.INFO)
|
| 26 |
-
logger = logging.getLogger(__name__)
|
| 27 |
-
|
| 28 |
-
# ==================== DATA MODELS ====================
|
| 29 |
-
|
| 30 |
-
class StreamStartRequest(BaseModel):
|
| 31 |
-
"""Start streaming request."""
|
| 32 |
-
rtmp_input_url: str
|
| 33 |
-
camera_path: str # e.g., "models/cam1" - will auto-pick gmm_model.joblib and mask.png
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
class StreamStopRequest(BaseModel):
|
| 37 |
-
"""Stop streaming request."""
|
| 38 |
-
stream_id: str
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
class StreamStatusResponse(BaseModel):
|
| 42 |
-
"""Stream status response."""
|
| 43 |
-
stream_id: str
|
| 44 |
-
status: str
|
| 45 |
-
fps: float
|
| 46 |
-
buffered_frames: int
|
| 47 |
-
queue_size: int
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
# ==================== CIRCULAR BUFFER ====================
|
| 51 |
-
|
| 52 |
-
class CircularFrameBuffer:
|
| 53 |
-
"""Fixed-size buffer for storing processed frames."""
|
| 54 |
-
|
| 55 |
-
def __init__(self, max_frames: int = 30):
|
| 56 |
-
self.max_frames = max_frames
|
| 57 |
-
self.frames = deque(maxlen=max_frames)
|
| 58 |
-
self.lock = Lock()
|
| 59 |
-
self.sequence_ids = deque(maxlen=max_frames)
|
| 60 |
-
|
| 61 |
-
def add_frame(self, frame: np.ndarray, seq_id: int) -> None:
|
| 62 |
-
"""Add processed frame to buffer."""
|
| 63 |
-
with self.lock:
|
| 64 |
-
self.frames.append(frame.copy())
|
| 65 |
-
self.sequence_ids.append(seq_id)
|
| 66 |
-
|
| 67 |
-
def get_latest(self) -> tuple:
|
| 68 |
-
"""Get most recent frame."""
|
| 69 |
-
with self.lock:
|
| 70 |
-
if len(self.frames) > 0:
|
| 71 |
-
return self.frames[-1].copy(), self.sequence_ids[-1]
|
| 72 |
-
return None, None
|
| 73 |
-
|
| 74 |
-
def clear(self) -> None:
|
| 75 |
-
"""Clear buffer."""
|
| 76 |
-
with self.lock:
|
| 77 |
-
self.frames.clear()
|
| 78 |
-
self.sequence_ids.clear()
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
# ==================== LIVE MONITOR ====================
|
| 82 |
-
|
| 83 |
-
class LiveHygieneMonitor:
|
| 84 |
-
"""Production-ready hygiene monitor for live streams."""
|
| 85 |
-
|
| 86 |
-
def __init__(self, segformer_path: str, max_buffer_frames: int = 30):
|
| 87 |
-
self.segformer_path = segformer_path
|
| 88 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 89 |
-
|
| 90 |
-
# Model loading
|
| 91 |
-
self.model = None
|
| 92 |
-
self.processor = None
|
| 93 |
-
self._load_segformer()
|
| 94 |
-
|
| 95 |
-
# GMM components
|
| 96 |
-
self.gmm_model = None
|
| 97 |
-
self.gmm_heatmap = None
|
| 98 |
-
self.table_mask = None
|
| 99 |
-
|
| 100 |
-
# Live streaming state
|
| 101 |
-
self.frame_buffer = CircularFrameBuffer(max_frames=max_buffer_frames)
|
| 102 |
-
self.input_queue = Queue(maxsize=5)
|
| 103 |
-
self.processing_thread = None
|
| 104 |
-
self.is_running = False
|
| 105 |
-
|
| 106 |
-
# Frame sequence tracking
|
| 107 |
-
self.frame_sequence = 0
|
| 108 |
-
self.frame_lock = Lock()
|
| 109 |
-
|
| 110 |
-
# State management
|
| 111 |
-
self.detection_frames_count = 0
|
| 112 |
-
self.no_detection_frames_count = 0
|
| 113 |
-
self.cleaning_active = False
|
| 114 |
-
self.cleaning_start_threshold = 4
|
| 115 |
-
self.cleaning_stop_threshold = 12
|
| 116 |
-
|
| 117 |
-
# Performance tracking
|
| 118 |
-
self.frame_times = deque(maxlen=30)
|
| 119 |
-
self.last_frame_time = time.time()
|
| 120 |
-
|
| 121 |
-
# Optimization flags
|
| 122 |
-
self.skip_segformer_every_n_frames = 2
|
| 123 |
-
self.segformer_skip_counter = 0
|
| 124 |
-
self.last_cloth_mask = None
|
| 125 |
-
|
| 126 |
-
# Visualization settings
|
| 127 |
-
self.show_cloth_detection = True
|
| 128 |
-
self.erasure_radius_factor = 0.2
|
| 129 |
-
self.gaussian_sigma_factor = 0.8
|
| 130 |
-
|
| 131 |
-
self.tracker = None
|
| 132 |
-
self.track_trajectories = {}
|
| 133 |
-
self.max_trajectory_length = 40
|
| 134 |
-
self.track_colors = {}
|
| 135 |
-
|
| 136 |
-
# Alert manager - ADD THIS
|
| 137 |
-
self.alert_manager = None
|
| 138 |
-
self.current_camera_name = "Default Camera"
|
| 139 |
-
|
| 140 |
-
logger.info(f"Live Monitor initialized on {self.device}")
|
| 141 |
-
|
| 142 |
-
def _load_segformer(self):
|
| 143 |
-
"""Load SegFormer model."""
|
| 144 |
-
try:
|
| 145 |
-
self.model = SegformerForSemanticSegmentation.from_pretrained(self.segformer_path)
|
| 146 |
-
self.processor = SegformerImageProcessor(do_reduce_labels=False)
|
| 147 |
-
self.model.to(self.device)
|
| 148 |
-
self.model.eval()
|
| 149 |
-
logger.info(f"SegFormer loaded on {self.device}")
|
| 150 |
-
except Exception as e:
|
| 151 |
-
logger.error(f"Failed to load SegFormer: {e}")
|
| 152 |
-
|
| 153 |
-
def _init_tracker(self):
|
| 154 |
-
"""Lazy-init tracker."""
|
| 155 |
-
if self.tracker is None:
|
| 156 |
-
from deep_sort_realtime.deepsort_tracker import DeepSort
|
| 157 |
-
self.tracker = DeepSort(
|
| 158 |
-
max_age=15,
|
| 159 |
-
n_init=2,
|
| 160 |
-
nms_max_overlap=0.7,
|
| 161 |
-
max_cosine_distance=0.4,
|
| 162 |
-
nn_budget=50,
|
| 163 |
-
embedder="mobilenet",
|
| 164 |
-
half=True,
|
| 165 |
-
embedder_gpu=torch.cuda.is_available()
|
| 166 |
-
)
|
| 167 |
-
|
| 168 |
-
def load_gmm_model(self, gmm_path: str) -> bool:
|
| 169 |
-
"""Load GMM model."""
|
| 170 |
-
try:
|
| 171 |
-
from GMM import GMM
|
| 172 |
-
self.gmm_model = GMM.load_model(gmm_path)
|
| 173 |
-
if self.gmm_model.img_shape:
|
| 174 |
-
h, w = self.gmm_model.img_shape[:2]
|
| 175 |
-
self.gmm_heatmap = np.zeros((h, w), dtype=np.float32)
|
| 176 |
-
logger.info("GMM model loaded")
|
| 177 |
-
return True
|
| 178 |
-
except Exception as e:
|
| 179 |
-
logger.error(f"Failed to load GMM: {e}")
|
| 180 |
-
return False
|
| 181 |
-
|
| 182 |
-
def load_table_mask(self, mask_path: str) -> bool:
|
| 183 |
-
"""Load table mask."""
|
| 184 |
-
try:
|
| 185 |
-
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
|
| 186 |
-
self.table_mask = (mask > 128).astype(np.uint8)
|
| 187 |
-
logger.info(f"Table mask loaded: {mask.shape}")
|
| 188 |
-
return True
|
| 189 |
-
except Exception as e:
|
| 190 |
-
logger.error(f"Failed to load mask: {e}")
|
| 191 |
-
return False
|
| 192 |
-
|
| 193 |
-
def add_frame(self, frame: np.ndarray) -> None:
|
| 194 |
-
"""Add incoming frame (non-blocking)."""
|
| 195 |
-
try:
|
| 196 |
-
self.input_queue.put_nowait(frame)
|
| 197 |
-
except:
|
| 198 |
-
pass
|
| 199 |
-
|
| 200 |
-
def start_processing(self) -> None:
|
| 201 |
-
"""Start background processing."""
|
| 202 |
-
if self.is_running:
|
| 203 |
-
return
|
| 204 |
-
self.is_running = True
|
| 205 |
-
self.processing_thread = Thread(target=self._process_loop, daemon=True)
|
| 206 |
-
self.processing_thread.start()
|
| 207 |
-
logger.info("Processing thread started")
|
| 208 |
-
|
| 209 |
-
def stop_processing(self) -> None:
|
| 210 |
-
"""Stop processing."""
|
| 211 |
-
self.is_running = False
|
| 212 |
-
if self.processing_thread:
|
| 213 |
-
self.processing_thread.join(timeout=5)
|
| 214 |
-
self.frame_buffer.clear()
|
| 215 |
-
logger.info("Processing stopped")
|
| 216 |
-
|
| 217 |
-
def _get_next_sequence_id(self) -> int:
|
| 218 |
-
"""Thread-safe sequence ID."""
|
| 219 |
-
with self.frame_lock:
|
| 220 |
-
self.frame_sequence += 1
|
| 221 |
-
return self.frame_sequence
|
| 222 |
-
|
| 223 |
-
def _process_loop(self) -> None:
|
| 224 |
-
"""Main processing loop."""
|
| 225 |
-
while self.is_running:
|
| 226 |
-
try:
|
| 227 |
-
frame = self.input_queue.get(timeout=1)
|
| 228 |
-
seq_id = self._get_next_sequence_id()
|
| 229 |
-
|
| 230 |
-
frame = self._resize_frame(frame, target_width=1024)
|
| 231 |
-
cloth_mask = self._detect_cloth_fast(frame)
|
| 232 |
-
cleaning_status = self._update_cleaning_status(cloth_mask)
|
| 233 |
-
|
| 234 |
-
tracks = None
|
| 235 |
-
if self.cleaning_active:
|
| 236 |
-
self._init_tracker()
|
| 237 |
-
tracks = self._track_cloth(frame, cloth_mask)
|
| 238 |
-
|
| 239 |
-
self._update_gmm_fast(frame, cloth_mask, tracks)
|
| 240 |
-
viz_frame = self._create_visualization(frame, cloth_mask, tracks, cleaning_status)
|
| 241 |
-
self.frame_buffer.add_frame(viz_frame, seq_id)
|
| 242 |
-
|
| 243 |
-
elapsed = time.time() - self.last_frame_time
|
| 244 |
-
self.frame_times.append(elapsed)
|
| 245 |
-
self.last_frame_time = time.time()
|
| 246 |
-
|
| 247 |
-
if seq_id % 30 == 0:
|
| 248 |
-
avg_time = np.mean(self.frame_times)
|
| 249 |
-
fps = 1.0 / avg_time if avg_time > 0 else 0
|
| 250 |
-
logger.info(f"Seq {seq_id} | {fps:.1f} FPS | {cleaning_status}")
|
| 251 |
-
|
| 252 |
-
except Exception as e:
|
| 253 |
-
logger.error(f"Processing error: {e}")
|
| 254 |
-
continue
|
| 255 |
-
|
| 256 |
-
def _resize_frame(self, frame: np.ndarray, target_width: int = 1024) -> np.ndarray:
|
| 257 |
-
"""Resize frame."""
|
| 258 |
-
h, w = frame.shape[:2]
|
| 259 |
-
if w > target_width:
|
| 260 |
-
scale = target_width / w
|
| 261 |
-
new_h = int(h * scale)
|
| 262 |
-
return cv2.resize(frame, (target_width, new_h))
|
| 263 |
-
return frame
|
| 264 |
-
|
| 265 |
-
def _detect_cloth_fast(self, frame: np.ndarray) -> np.ndarray:
|
| 266 |
-
"""Fast cloth detection with skipping."""
|
| 267 |
-
if self.model is None:
|
| 268 |
-
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 269 |
-
|
| 270 |
-
self.segformer_skip_counter += 1
|
| 271 |
-
if self.segformer_skip_counter < self.skip_segformer_every_n_frames:
|
| 272 |
-
if self.last_cloth_mask is not None:
|
| 273 |
-
return self.last_cloth_mask
|
| 274 |
-
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 275 |
-
|
| 276 |
-
self.segformer_skip_counter = 0
|
| 277 |
-
|
| 278 |
-
try:
|
| 279 |
-
height, width = frame.shape[:2]
|
| 280 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 281 |
-
pil_image = Image.fromarray(frame_rgb)
|
| 282 |
-
|
| 283 |
-
with torch.no_grad():
|
| 284 |
-
inputs = self.processor(images=pil_image, return_tensors="pt")
|
| 285 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 286 |
-
outputs = self.model(**inputs)
|
| 287 |
-
logits = outputs.logits
|
| 288 |
-
|
| 289 |
-
upsampled = torch.nn.functional.interpolate(
|
| 290 |
-
logits, size=(height, width), mode="bilinear", align_corners=False
|
| 291 |
-
)
|
| 292 |
-
|
| 293 |
-
cloth_mask = (upsampled.argmax(dim=1)[0].cpu().numpy() == 1).astype(np.uint8)
|
| 294 |
-
|
| 295 |
-
if self.table_mask is not None:
|
| 296 |
-
if self.table_mask.shape != cloth_mask.shape:
|
| 297 |
-
table_resized = cv2.resize(self.table_mask, (width, height))
|
| 298 |
-
else:
|
| 299 |
-
table_resized = self.table_mask
|
| 300 |
-
cloth_mask = cloth_mask * table_resized
|
| 301 |
-
|
| 302 |
-
self.last_cloth_mask = cloth_mask
|
| 303 |
-
return cloth_mask
|
| 304 |
-
|
| 305 |
-
except Exception as e:
|
| 306 |
-
logger.error(f"Cloth detection error: {e}")
|
| 307 |
-
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 308 |
-
|
| 309 |
-
def _track_cloth(self, frame: np.ndarray, cloth_mask: np.ndarray) -> list:
|
| 310 |
-
"""Fast tracking."""
|
| 311 |
-
if self.tracker is None:
|
| 312 |
-
return []
|
| 313 |
-
|
| 314 |
-
try:
|
| 315 |
-
contours, _ = cv2.findContours(cloth_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 316 |
-
detections = []
|
| 317 |
-
|
| 318 |
-
for contour in contours:
|
| 319 |
-
area = cv2.contourArea(contour)
|
| 320 |
-
if area < 150:
|
| 321 |
-
continue
|
| 322 |
-
x, y, w, h = cv2.boundingRect(contour)
|
| 323 |
-
if w > 0 and h > 0:
|
| 324 |
-
detections.append(([x, y, w, h], 0.95, 'cloth'))
|
| 325 |
-
|
| 326 |
-
if not detections:
|
| 327 |
-
return []
|
| 328 |
-
|
| 329 |
-
tracks = self.tracker.update_tracks(detections, frame=frame)
|
| 330 |
-
|
| 331 |
-
height, width = frame.shape[:2]
|
| 332 |
-
for track in tracks:
|
| 333 |
-
if not track.is_confirmed():
|
| 334 |
-
continue
|
| 335 |
-
|
| 336 |
-
track_id = track.track_id
|
| 337 |
-
bbox = track.to_ltrb()
|
| 338 |
-
cx = int((bbox[0] + bbox[2]) / 2)
|
| 339 |
-
cy = int((bbox[1] + bbox[3]) / 2)
|
| 340 |
-
|
| 341 |
-
if 0 <= cx < width and 0 <= cy < height:
|
| 342 |
-
if track_id not in self.track_trajectories:
|
| 343 |
-
self.track_trajectories[track_id] = deque(maxlen=self.max_trajectory_length)
|
| 344 |
-
self.track_colors[track_id] = (255, 255, 0)
|
| 345 |
-
self.track_trajectories[track_id].append((cx, cy))
|
| 346 |
-
|
| 347 |
-
active_ids = {track.track_id for track in tracks if track.is_confirmed()}
|
| 348 |
-
dead_ids = set(self.track_trajectories.keys()) - active_ids
|
| 349 |
-
for dead_id in dead_ids:
|
| 350 |
-
self.track_trajectories.pop(dead_id, None)
|
| 351 |
-
self.track_colors.pop(dead_id, None)
|
| 352 |
-
|
| 353 |
-
return tracks
|
| 354 |
-
|
| 355 |
-
except Exception as e:
|
| 356 |
-
logger.error(f"Tracking error: {e}")
|
| 357 |
-
return []
|
| 358 |
-
|
| 359 |
-
def _update_gmm_fast(self, frame: np.ndarray, cloth_mask: np.ndarray, tracks: list) -> None:
|
| 360 |
-
"""Lightweight GMM update."""
|
| 361 |
-
if self.gmm_model is None:
|
| 362 |
-
return
|
| 363 |
-
|
| 364 |
-
try:
|
| 365 |
-
height, width = frame.shape[:2]
|
| 366 |
-
table_mask = None
|
| 367 |
-
if self.table_mask is not None:
|
| 368 |
-
if self.table_mask.shape != (height, width):
|
| 369 |
-
table_mask = cv2.resize(self.table_mask, (width, height))
|
| 370 |
-
else:
|
| 371 |
-
table_mask = self.table_mask
|
| 372 |
-
|
| 373 |
-
_, self.gmm_heatmap = self.gmm_model.infer(
|
| 374 |
-
frame, heatmap=self.gmm_heatmap,
|
| 375 |
-
alpha_start=0.008, alpha_end=0.0004,
|
| 376 |
-
table_mask=table_mask
|
| 377 |
-
)
|
| 378 |
-
|
| 379 |
-
if self.cleaning_active and tracks:
|
| 380 |
-
for track in tracks:
|
| 381 |
-
if not track.is_confirmed():
|
| 382 |
-
continue
|
| 383 |
-
|
| 384 |
-
track_id = track.track_id
|
| 385 |
-
if track_id not in self.track_trajectories:
|
| 386 |
-
continue
|
| 387 |
-
|
| 388 |
-
trajectory = list(self.track_trajectories[track_id])
|
| 389 |
-
if len(trajectory) < 2:
|
| 390 |
-
continue
|
| 391 |
-
|
| 392 |
-
bbox = track.to_ltrb()
|
| 393 |
-
w = bbox[2] - bbox[0]
|
| 394 |
-
h = bbox[3] - bbox[1]
|
| 395 |
-
|
| 396 |
-
radius = int(min(w, h) * self.erasure_radius_factor)
|
| 397 |
-
radius = max(radius, 12)
|
| 398 |
-
|
| 399 |
-
if radius <= 0 or w <= 0 or h <= 0:
|
| 400 |
-
continue
|
| 401 |
-
|
| 402 |
-
for i in range(len(trajectory) - 1):
|
| 403 |
-
self._erase_at_point(trajectory[i], radius, table_mask)
|
| 404 |
-
|
| 405 |
-
except Exception as e:
|
| 406 |
-
logger.error(f"GMM update error: {e}")
|
| 407 |
-
|
| 408 |
-
def _erase_at_point(self, point: tuple, radius: int, table_mask: np.ndarray) -> None:
|
| 409 |
-
"""Fast point-based erasure."""
|
| 410 |
-
if self.gmm_heatmap is None or radius <= 0:
|
| 411 |
-
return
|
| 412 |
-
|
| 413 |
-
x, y = point
|
| 414 |
-
height, width = self.gmm_heatmap.shape
|
| 415 |
-
|
| 416 |
-
y_min = max(0, y - radius)
|
| 417 |
-
y_max = min(height, y + radius)
|
| 418 |
-
x_min = max(0, x - radius)
|
| 419 |
-
x_max = min(width, x + radius)
|
| 420 |
-
|
| 421 |
-
if y_min >= y_max or x_min >= x_max:
|
| 422 |
-
return
|
| 423 |
-
|
| 424 |
-
y_indices, x_indices = np.ogrid[y_min:y_max, x_min:x_max]
|
| 425 |
-
distance_sq = (x_indices - x)**2 + (y_indices - y)**2
|
| 426 |
-
|
| 427 |
-
gaussian = np.exp(-distance_sq / (2 * (radius * self.gaussian_sigma_factor)**2))
|
| 428 |
-
|
| 429 |
-
if table_mask is not None:
|
| 430 |
-
gaussian = gaussian * table_mask[y_min:y_max, x_min:x_max]
|
| 431 |
-
|
| 432 |
-
decay = 0.025 * gaussian
|
| 433 |
-
self.gmm_heatmap[y_min:y_max, x_min:x_max] = np.maximum(
|
| 434 |
-
0, self.gmm_heatmap[y_min:y_max, x_min:x_max] - decay
|
| 435 |
-
)
|
| 436 |
-
|
| 437 |
-
def _update_cleaning_status(self, cloth_mask: np.ndarray) -> str:
|
| 438 |
-
"""Update cleaning status."""
|
| 439 |
-
has_cloth = np.sum(cloth_mask) > 100
|
| 440 |
-
|
| 441 |
-
if has_cloth:
|
| 442 |
-
self.detection_frames_count += 1
|
| 443 |
-
self.no_detection_frames_count = 0
|
| 444 |
-
else:
|
| 445 |
-
self.no_detection_frames_count += 1
|
| 446 |
-
self.detection_frames_count = 0
|
| 447 |
-
|
| 448 |
-
if not self.cleaning_active and self.detection_frames_count >= self.cleaning_start_threshold:
|
| 449 |
-
self.cleaning_active = True
|
| 450 |
-
return "CLEANING STARTED"
|
| 451 |
-
elif self.cleaning_active and self.no_detection_frames_count >= self.cleaning_stop_threshold:
|
| 452 |
-
self.cleaning_active = False
|
| 453 |
-
return "CLEANING STOPPED"
|
| 454 |
-
|
| 455 |
-
return "CLEANING ACTIVE" if self.cleaning_active else "NO CLEANING"
|
| 456 |
-
|
| 457 |
-
def _create_visualization(self, frame: np.ndarray, cloth_mask: np.ndarray,
|
| 458 |
-
tracks: list, cleaning_status: str) -> np.ndarray:
|
| 459 |
-
"""Create fast visualization."""
|
| 460 |
-
result = frame.copy()
|
| 461 |
-
|
| 462 |
-
if np.sum(cloth_mask) > 0:
|
| 463 |
-
overlay = result.copy()
|
| 464 |
-
cloth_pixels = cloth_mask > 0
|
| 465 |
-
overlay[cloth_pixels] = [0, 255, 0]
|
| 466 |
-
result[cloth_pixels] = cv2.addWeighted(
|
| 467 |
-
frame[cloth_pixels], 0.7, overlay[cloth_pixels], 0.3, 0
|
| 468 |
-
)
|
| 469 |
-
|
| 470 |
-
if self.gmm_heatmap is not None and self.gmm_heatmap.max() > 0:
|
| 471 |
-
height, width = result.shape[:2]
|
| 472 |
-
heatmap_resized = cv2.resize(self.gmm_heatmap, (width, height))
|
| 473 |
-
heatmap_colored = cv2.applyColorMap(
|
| 474 |
-
(heatmap_resized * 255).astype(np.uint8), cv2.COLORMAP_JET
|
| 475 |
-
)
|
| 476 |
-
significant = heatmap_resized > 0.1
|
| 477 |
-
result[significant] = cv2.addWeighted(
|
| 478 |
-
frame[significant], 0.6, heatmap_colored[significant], 0.4, 0
|
| 479 |
-
)
|
| 480 |
-
|
| 481 |
-
if tracks:
|
| 482 |
-
for track in tracks:
|
| 483 |
-
if track.is_confirmed():
|
| 484 |
-
bbox = track.to_ltrb()
|
| 485 |
-
cx, cy = int((bbox[0] + bbox[2])/2), int((bbox[1] + bbox[3])/2)
|
| 486 |
-
cv2.circle(result, (cx, cy), 4, (0, 0, 255), -1)
|
| 487 |
-
|
| 488 |
-
status_color = (0, 255, 0) if "ACTIVE" in cleaning_status else (150, 150, 150)
|
| 489 |
-
cv2.putText(result, cleaning_status, (20, 40),
|
| 490 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.7, status_color, 2)
|
| 491 |
-
|
| 492 |
-
return result
|
| 493 |
-
|
| 494 |
-
def get_latest_frame(self) -> np.ndarray:
|
| 495 |
-
"""Get latest processed frame."""
|
| 496 |
-
frame, _ = self.frame_buffer.get_latest()
|
| 497 |
-
return frame
|
| 498 |
-
|
| 499 |
-
def get_stats(self) -> dict:
|
| 500 |
-
"""Get stats."""
|
| 501 |
-
with self.frame_buffer.lock:
|
| 502 |
-
avg_time = np.mean(self.frame_times) if len(self.frame_times) > 0 else 0.033
|
| 503 |
-
fps = 1.0 / avg_time if avg_time > 0 else 0
|
| 504 |
-
return {
|
| 505 |
-
"buffered_frames": len(self.frame_buffer.frames),
|
| 506 |
-
"avg_fps": fps,
|
| 507 |
-
"queue_size": self.input_queue.qsize(),
|
| 508 |
-
"is_running": self.is_running
|
| 509 |
-
}
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
# ==================== FASTAPI APP ====================
|
| 513 |
-
|
| 514 |
-
app = FastAPI(title="Hygiene Monitor Live Stream", version="1.0.0")
|
| 515 |
-
|
| 516 |
-
# Active streams: {stream_id: {"monitor": LiveHygieneMonitor, "cap": VideoCapture, "thread": Thread}}
|
| 517 |
-
active_streams = {}
|
| 518 |
-
streams_lock = Lock()
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
def _get_model_files(camera_path: str) -> tuple:
|
| 522 |
-
"""Extract GMM and mask paths from camera directory."""
|
| 523 |
-
if not os.path.isdir(camera_path):
|
| 524 |
-
raise ValueError(f"Camera path not found: {camera_path}")
|
| 525 |
-
|
| 526 |
-
gmm_path = os.path.join(camera_path, "gmm_model.joblib")
|
| 527 |
-
mask_path = os.path.join(camera_path, "mask.png")
|
| 528 |
-
|
| 529 |
-
if not os.path.exists(gmm_path):
|
| 530 |
-
raise ValueError(f"GMM model not found: {gmm_path}")
|
| 531 |
-
if not os.path.exists(mask_path):
|
| 532 |
-
raise ValueError(f"Mask not found: {mask_path}")
|
| 533 |
-
|
| 534 |
-
return gmm_path, mask_path
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
def _stream_worker(stream_id: str, rtmp_url: str, gmm_path: str, mask_path: str):
|
| 538 |
-
"""Background worker for streaming."""
|
| 539 |
-
try:
|
| 540 |
-
monitor = LiveHygieneMonitor(
|
| 541 |
-
segformer_path="models/segformer_model",
|
| 542 |
-
max_buffer_frames=30
|
| 543 |
-
)
|
| 544 |
-
|
| 545 |
-
if not monitor.load_gmm_model(gmm_path):
|
| 546 |
-
logger.error(f"[{stream_id}] Failed to load GMM model")
|
| 547 |
-
return
|
| 548 |
-
|
| 549 |
-
if not monitor.load_table_mask(mask_path):
|
| 550 |
-
logger.error(f"[{stream_id}] Failed to load mask")
|
| 551 |
-
return
|
| 552 |
-
|
| 553 |
-
# === INITIALIZE ALERT MANAGER - ADD THIS ===
|
| 554 |
-
webhook_url = os.getenv("DISCORD_WEBHOOK_URL") # From environment
|
| 555 |
-
if webhook_url:
|
| 556 |
-
monitor.alert_manager = DiscordAlertManager(webhook_url=webhook_url)
|
| 557 |
-
monitor.current_camera_name = stream_id # Or pass from request
|
| 558 |
-
logger.info(f"[{stream_id}] Alert manager initialized")
|
| 559 |
-
|
| 560 |
-
monitor.start_processing()
|
| 561 |
-
|
| 562 |
-
cap = cv2.VideoCapture(rtmp_url)
|
| 563 |
-
if not cap.isOpened():
|
| 564 |
-
logger.error(f"[{stream_id}] Failed to connect to RTMP: {rtmp_url}")
|
| 565 |
-
monitor.stop_processing()
|
| 566 |
-
return
|
| 567 |
-
|
| 568 |
-
# Update active stream
|
| 569 |
-
with streams_lock:
|
| 570 |
-
if stream_id in active_streams:
|
| 571 |
-
active_streams[stream_id]["monitor"] = monitor
|
| 572 |
-
active_streams[stream_id]["cap"] = cap
|
| 573 |
-
active_streams[stream_id]["connected"] = True
|
| 574 |
-
|
| 575 |
-
frame_count = 0
|
| 576 |
-
logger.info(f"[{stream_id}] Connected to {rtmp_url}")
|
| 577 |
-
|
| 578 |
-
while True:
|
| 579 |
-
with streams_lock:
|
| 580 |
-
if stream_id not in active_streams or not active_streams[stream_id]["running"]:
|
| 581 |
-
break
|
| 582 |
-
|
| 583 |
-
ret, frame = cap.read()
|
| 584 |
-
if not ret:
|
| 585 |
-
logger.warning(f"[{stream_id}] RTMP connection lost, reconnecting...")
|
| 586 |
-
cap.release()
|
| 587 |
-
time.sleep(2)
|
| 588 |
-
cap = cv2.VideoCapture(rtmp_url)
|
| 589 |
-
continue
|
| 590 |
-
|
| 591 |
-
monitor.add_frame(frame)
|
| 592 |
-
frame_count += 1
|
| 593 |
-
|
| 594 |
-
if frame_count % 100 == 0:
|
| 595 |
-
stats = monitor.get_stats()
|
| 596 |
-
logger.info(f"[{stream_id}] Frames: {frame_count}, FPS: {stats['avg_fps']:.1f}")
|
| 597 |
-
|
| 598 |
-
except Exception as e:
|
| 599 |
-
logger.error(f"[{stream_id}] Stream error: {e}")
|
| 600 |
-
|
| 601 |
-
finally:
|
| 602 |
-
with streams_lock:
|
| 603 |
-
if stream_id in active_streams:
|
| 604 |
-
if active_streams[stream_id]["cap"]:
|
| 605 |
-
active_streams[stream_id]["cap"].release()
|
| 606 |
-
if active_streams[stream_id]["monitor"]:
|
| 607 |
-
active_streams[stream_id]["monitor"].stop_processing()
|
| 608 |
-
active_streams[stream_id]["connected"] = False
|
| 609 |
-
|
| 610 |
-
logger.info(f"[{stream_id}] Stream closed")
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
# ==================== ENDPOINTS ====================
|
| 614 |
-
|
| 615 |
-
@app.post("/stream/start")
|
| 616 |
-
async def start_stream(request: StreamStartRequest):
|
| 617 |
-
"""Start a new live stream."""
|
| 618 |
-
stream_id = f"stream_{int(time.time() * 1000)}"
|
| 619 |
-
|
| 620 |
-
try:
|
| 621 |
-
# Extract model files from camera path
|
| 622 |
-
gmm_path, mask_path = _get_model_files(request.camera_path)
|
| 623 |
-
|
| 624 |
-
# Create stream entry
|
| 625 |
-
with streams_lock:
|
| 626 |
-
active_streams[stream_id] = {
|
| 627 |
-
"running": True,
|
| 628 |
-
"connected": False,
|
| 629 |
-
"monitor": None,
|
| 630 |
-
"cap": None,
|
| 631 |
-
"thread": None,
|
| 632 |
-
"camera_path": request.camera_path
|
| 633 |
-
}
|
| 634 |
-
|
| 635 |
-
# Start background worker thread
|
| 636 |
-
thread = Thread(
|
| 637 |
-
target=_stream_worker,
|
| 638 |
-
args=(stream_id, request.rtmp_input_url, gmm_path, mask_path),
|
| 639 |
-
daemon=True
|
| 640 |
-
)
|
| 641 |
-
thread.start()
|
| 642 |
-
|
| 643 |
-
with streams_lock:
|
| 644 |
-
active_streams[stream_id]["thread"] = thread
|
| 645 |
-
|
| 646 |
-
logger.info(f"Stream {stream_id} started")
|
| 647 |
-
return {
|
| 648 |
-
"stream_id": stream_id,
|
| 649 |
-
"status": "starting",
|
| 650 |
-
"message": f"Stream {stream_id} is starting, will connect to {request.rtmp_input_url}"
|
| 651 |
-
}
|
| 652 |
-
|
| 653 |
-
except Exception as e:
|
| 654 |
-
logger.error(f"Failed to start stream: {e}")
|
| 655 |
-
raise HTTPException(status_code=400, detail=str(e))
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
@app.post("/stream/stop")
|
| 659 |
-
async def stop_stream(request: StreamStopRequest):
|
| 660 |
-
"""Stop a live stream."""
|
| 661 |
-
stream_id = request.stream_id
|
| 662 |
-
|
| 663 |
-
with streams_lock:
|
| 664 |
-
if stream_id not in active_streams:
|
| 665 |
-
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 666 |
-
|
| 667 |
-
active_streams[stream_id]["running"] = False
|
| 668 |
-
|
| 669 |
-
logger.info(f"Stream {stream_id} stop requested")
|
| 670 |
-
return {"stream_id": stream_id, "status": "stopping"}
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
@app.get("/stream/status/{stream_id}")
|
| 674 |
-
async def get_stream_status(stream_id: str):
|
| 675 |
-
"""Get stream status."""
|
| 676 |
-
with streams_lock:
|
| 677 |
-
if stream_id not in active_streams:
|
| 678 |
-
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 679 |
-
|
| 680 |
-
stream_data = active_streams[stream_id]
|
| 681 |
-
monitor = stream_data["monitor"]
|
| 682 |
-
|
| 683 |
-
stats = monitor.get_stats() if monitor else {}
|
| 684 |
-
|
| 685 |
-
return {
|
| 686 |
-
"stream_id": stream_id,
|
| 687 |
-
"connected": stream_data["connected"],
|
| 688 |
-
"running": stream_data["running"],
|
| 689 |
-
"camera_path": stream_data["camera_path"],
|
| 690 |
-
"fps": stats.get("avg_fps", 0),
|
| 691 |
-
"buffered_frames": stats.get("buffered_frames", 0),
|
| 692 |
-
"queue_size": stats.get("queue_size", 0)
|
| 693 |
-
}
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
@app.get("/stream/video/{stream_id}")
|
| 697 |
-
async def stream_video(stream_id: str):
|
| 698 |
-
"""Stream video frames via MJPEG."""
|
| 699 |
-
with streams_lock:
|
| 700 |
-
if stream_id not in active_streams:
|
| 701 |
-
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 702 |
-
|
| 703 |
-
monitor = active_streams[stream_id]["monitor"]
|
| 704 |
-
|
| 705 |
-
if not monitor:
|
| 706 |
-
raise HTTPException(status_code=503, detail="Monitor not ready")
|
| 707 |
-
|
| 708 |
-
async def frame_generator():
|
| 709 |
-
while True:
|
| 710 |
-
with streams_lock:
|
| 711 |
-
if stream_id not in active_streams or not active_streams[stream_id]["running"]:
|
| 712 |
-
break
|
| 713 |
-
|
| 714 |
-
frame = monitor.get_latest_frame()
|
| 715 |
-
if frame is not None:
|
| 716 |
-
_, buffer = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 80])
|
| 717 |
-
yield (b'--frame\r\n'
|
| 718 |
-
b'Content-Type: image/jpeg\r\n'
|
| 719 |
-
b'Content-Length: ' + str(len(buffer)).encode() + b'\r\n\r\n'
|
| 720 |
-
+ buffer.tobytes() + b'\r\n')
|
| 721 |
-
else:
|
| 722 |
-
await asyncio.sleep(0.01)
|
| 723 |
-
|
| 724 |
-
return StreamingResponse(
|
| 725 |
-
frame_generator(),
|
| 726 |
-
media_type="multipart/x-mixed-replace; boundary=frame"
|
| 727 |
-
)
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
@app.get("/streams")
|
| 731 |
-
async def list_streams():
|
| 732 |
-
"""List all active streams."""
|
| 733 |
-
with streams_lock:
|
| 734 |
-
streams_list = []
|
| 735 |
-
for stream_id, data in active_streams.items():
|
| 736 |
-
monitor = data["monitor"]
|
| 737 |
-
stats = monitor.get_stats() if monitor else {}
|
| 738 |
-
|
| 739 |
-
streams_list.append({
|
| 740 |
-
"stream_id": stream_id,
|
| 741 |
-
"connected": data["connected"],
|
| 742 |
-
"running": data["running"],
|
| 743 |
-
"camera_path": data["camera_path"],
|
| 744 |
-
"fps": stats.get("avg_fps", 0),
|
| 745 |
-
"buffered_frames": stats.get("buffered_frames", 0)
|
| 746 |
-
})
|
| 747 |
-
|
| 748 |
-
return {"total_streams": len(streams_list), "streams": streams_list}
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
@app.post("/stream/restart/{stream_id}")
|
| 752 |
-
async def restart_stream(stream_id: str):
|
| 753 |
-
"""Restart a stream."""
|
| 754 |
-
with streams_lock:
|
| 755 |
-
if stream_id not in active_streams:
|
| 756 |
-
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 757 |
-
|
| 758 |
-
active_streams[stream_id]["running"] = False
|
| 759 |
-
|
| 760 |
-
await asyncio.sleep(2)
|
| 761 |
-
|
| 762 |
-
with streams_lock:
|
| 763 |
-
data = active_streams[stream_id]
|
| 764 |
-
data["running"] = True
|
| 765 |
-
|
| 766 |
-
return {"stream_id": stream_id, "status": "restarting"}
|
| 767 |
-
|
| 768 |
-
@app.post("/camera/extract_frame")
|
| 769 |
-
async def extract_frame_from_rtmp(request: dict):
|
| 770 |
-
"""
|
| 771 |
-
Extract a single frame from RTMP stream for corner selection.
|
| 772 |
-
|
| 773 |
-
Request body:
|
| 774 |
-
{
|
| 775 |
-
"rtmp_url": "rtmp://192.168.1.100:1935/live/kitchen",
|
| 776 |
-
"camera_name": "kitchen"
|
| 777 |
-
}
|
| 778 |
-
|
| 779 |
-
Returns:
|
| 780 |
-
{
|
| 781 |
-
"success": true,
|
| 782 |
-
"frame_base64": "base64_encoded_image",
|
| 783 |
-
"frame_dimensions": {"width": 1920, "height": 1080}
|
| 784 |
-
}
|
| 785 |
-
"""
|
| 786 |
-
try:
|
| 787 |
-
rtmp_url = request.get("rtmp_url")
|
| 788 |
-
camera_name = request.get("camera_name")
|
| 789 |
-
|
| 790 |
-
if not rtmp_url or not camera_name:
|
| 791 |
-
raise HTTPException(status_code=400, detail="Missing rtmp_url or camera_name")
|
| 792 |
-
|
| 793 |
-
# Connect to RTMP stream
|
| 794 |
-
cap = cv2.VideoCapture(rtmp_url)
|
| 795 |
-
if not cap.isOpened():
|
| 796 |
-
raise HTTPException(status_code=400, detail=f"Failed to connect to RTMP: {rtmp_url}")
|
| 797 |
-
|
| 798 |
-
# Read first frame
|
| 799 |
-
ret, frame = cap.read()
|
| 800 |
-
cap.release()
|
| 801 |
-
|
| 802 |
-
if not ret:
|
| 803 |
-
raise HTTPException(status_code=400, detail="Failed to read frame from RTMP stream")
|
| 804 |
-
import base64
|
| 805 |
-
# Convert frame to base64 for frontend display
|
| 806 |
-
_, buffer = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 95])
|
| 807 |
-
frame_base64 = base64.b64encode(buffer).decode('utf-8')
|
| 808 |
-
|
| 809 |
-
# Store frame temporarily for training (optional - could store in memory cache)
|
| 810 |
-
temp_dir = "temp_frames"
|
| 811 |
-
os.makedirs(temp_dir, exist_ok=True)
|
| 812 |
-
temp_frame_path = os.path.join(temp_dir, f"{camera_name}_reference.jpg")
|
| 813 |
-
cv2.imwrite(temp_frame_path, frame)
|
| 814 |
-
|
| 815 |
-
return {
|
| 816 |
-
"success": True,
|
| 817 |
-
"frame_base64": frame_base64,
|
| 818 |
-
"frame_dimensions": {
|
| 819 |
-
"width": frame.shape[1],
|
| 820 |
-
"height": frame.shape[0]
|
| 821 |
-
},
|
| 822 |
-
"temp_frame_path": temp_frame_path
|
| 823 |
-
}
|
| 824 |
-
|
| 825 |
-
except Exception as e:
|
| 826 |
-
logger.error(f"Extract frame error: {e}")
|
| 827 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
@app.post("/camera/train_gmm")
|
| 831 |
-
async def train_gmm_from_rtmp(request: dict):
|
| 832 |
-
"""
|
| 833 |
-
Train GMM model from RTMP stream using N corner points (minimum 4).
|
| 834 |
-
|
| 835 |
-
Request body:
|
| 836 |
-
{
|
| 837 |
-
"rtmp_url": "rtmp://192.168.1.100:1935/live/kitchen",
|
| 838 |
-
"camera_name": "kitchen",
|
| 839 |
-
"corner_points": [
|
| 840 |
-
{"x": 100, "y": 50},
|
| 841 |
-
{"x": 400, "y": 45},
|
| 842 |
-
{"x": 700, "y": 55},
|
| 843 |
-
{"x": 800, "y": 60},
|
| 844 |
-
{"x": 850, "y": 300},
|
| 845 |
-
{"x": 850, "y": 600},
|
| 846 |
-
{"x": 400, "y": 620},
|
| 847 |
-
{"x": 50, "y": 580},
|
| 848 |
-
{"x": 45, "y": 300}
|
| 849 |
-
], // Can be 4+ points for curved tables
|
| 850 |
-
"max_frames": 250,
|
| 851 |
-
"use_perspective_warp": false // NEW: Set false for non-rectangular tables
|
| 852 |
-
}
|
| 853 |
-
"""
|
| 854 |
-
try:
|
| 855 |
-
rtmp_url = request.get("rtmp_url")
|
| 856 |
-
camera_name = request.get("camera_name")
|
| 857 |
-
corner_points = request.get("corner_points")
|
| 858 |
-
max_frames = request.get("max_frames", 250)
|
| 859 |
-
use_perspective_warp = request.get("use_perspective_warp", False) # NEW
|
| 860 |
-
|
| 861 |
-
# Validation
|
| 862 |
-
if not rtmp_url or not camera_name or not corner_points:
|
| 863 |
-
raise HTTPException(status_code=400, detail="Missing required parameters")
|
| 864 |
-
|
| 865 |
-
if len(corner_points) < 4:
|
| 866 |
-
raise HTTPException(status_code=400, detail="Minimum 4 corner points required")
|
| 867 |
-
|
| 868 |
-
logger.info(f"Starting GMM training for camera: {camera_name} with {len(corner_points)} points")
|
| 869 |
-
|
| 870 |
-
# ===== STEP 1: Connect to RTMP and capture frames =====
|
| 871 |
-
cap = cv2.VideoCapture(rtmp_url)
|
| 872 |
-
if not cap.isOpened():
|
| 873 |
-
raise HTTPException(status_code=400, detail=f"Failed to connect to RTMP: {rtmp_url}")
|
| 874 |
-
|
| 875 |
-
ret, first_frame = cap.read()
|
| 876 |
-
if not ret:
|
| 877 |
-
cap.release()
|
| 878 |
-
raise HTTPException(status_code=400, detail="Failed to read from RTMP stream")
|
| 879 |
-
|
| 880 |
-
h, w = first_frame.shape[:2]
|
| 881 |
-
|
| 882 |
-
# ===== STEP 2: Create polygon mask from N points =====
|
| 883 |
-
pts_polygon = np.array([
|
| 884 |
-
[point['x'], point['y']] for point in corner_points
|
| 885 |
-
], dtype=np.int32)
|
| 886 |
-
|
| 887 |
-
# Create binary mask for the table area
|
| 888 |
-
table_mask = np.zeros((h, w), dtype=np.uint8)
|
| 889 |
-
cv2.fillPoly(table_mask, [pts_polygon], 255)
|
| 890 |
-
|
| 891 |
-
# ===== STEP 3: Decide transformation strategy =====
|
| 892 |
-
import tempfile
|
| 893 |
-
temp_dir = tempfile.mkdtemp()
|
| 894 |
-
frame_count = 0
|
| 895 |
-
|
| 896 |
-
if use_perspective_warp and len(corner_points) == 4:
|
| 897 |
-
# ===== STRATEGY A: Perspective warp (rectangular tables only) =====
|
| 898 |
-
logger.info("Using perspective warp for rectangular table")
|
| 899 |
-
|
| 900 |
-
pts_src = np.array([
|
| 901 |
-
[corner_points[0]['x'], corner_points[0]['y']],
|
| 902 |
-
[corner_points[1]['x'], corner_points[1]['y']],
|
| 903 |
-
[corner_points[2]['x'], corner_points[2]['y']],
|
| 904 |
-
[corner_points[3]['x'], corner_points[3]['y']]
|
| 905 |
-
], dtype=np.float32)
|
| 906 |
-
|
| 907 |
-
pts_dst = np.array([
|
| 908 |
-
[0, 0], [w, 0], [w, h], [0, h]
|
| 909 |
-
], dtype=np.float32)
|
| 910 |
-
|
| 911 |
-
matrix = cv2.getPerspectiveTransform(pts_src, pts_dst)
|
| 912 |
-
|
| 913 |
-
# Capture and warp frames
|
| 914 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
| 915 |
-
while frame_count < max_frames:
|
| 916 |
-
ret, frame = cap.read()
|
| 917 |
-
if not ret:
|
| 918 |
-
break
|
| 919 |
-
|
| 920 |
-
warped = cv2.warpPerspective(frame, matrix, (w, h))
|
| 921 |
-
frame_path = os.path.join(temp_dir, f'b{frame_count:05d}.png')
|
| 922 |
-
cv2.imwrite(frame_path, warped)
|
| 923 |
-
frame_count += 1
|
| 924 |
-
|
| 925 |
-
if frame_count % 50 == 0:
|
| 926 |
-
logger.info(f"Captured {frame_count}/{max_frames} frames")
|
| 927 |
-
|
| 928 |
-
# For warped images, mask should be full frame (already aligned)
|
| 929 |
-
final_mask = np.ones((h, w), dtype=np.uint8) * 255
|
| 930 |
-
|
| 931 |
-
else:
|
| 932 |
-
# ===== STRATEGY B: Direct masking (curved/complex tables) =====
|
| 933 |
-
logger.info(f"Using direct masking for {len(corner_points)}-point polygon (curved table)")
|
| 934 |
-
|
| 935 |
-
# Capture frames WITHOUT warping, apply mask during inference
|
| 936 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
| 937 |
-
while frame_count < max_frames:
|
| 938 |
-
ret, frame = cap.read()
|
| 939 |
-
if not ret:
|
| 940 |
-
break
|
| 941 |
-
|
| 942 |
-
# Apply mask to frame (zero out outside table area)
|
| 943 |
-
masked_frame = cv2.bitwise_and(frame, frame, mask=table_mask)
|
| 944 |
-
|
| 945 |
-
frame_path = os.path.join(temp_dir, f'b{frame_count:05d}.png')
|
| 946 |
-
cv2.imwrite(frame_path, masked_frame)
|
| 947 |
-
frame_count += 1
|
| 948 |
-
|
| 949 |
-
if frame_count % 50 == 0:
|
| 950 |
-
logger.info(f"Captured {frame_count}/{max_frames} frames")
|
| 951 |
-
|
| 952 |
-
# Use original polygon mask
|
| 953 |
-
final_mask = table_mask
|
| 954 |
-
|
| 955 |
-
cap.release()
|
| 956 |
-
|
| 957 |
-
if frame_count == 0:
|
| 958 |
-
raise HTTPException(status_code=400, detail="No frames captured")
|
| 959 |
-
|
| 960 |
-
logger.info(f"Captured {frame_count} frames, starting GMM training...")
|
| 961 |
-
|
| 962 |
-
# ===== STEP 4: Train GMM =====
|
| 963 |
-
from GMM import GMM
|
| 964 |
-
gmm = GMM(temp_dir, frame_count, alpha=0.05)
|
| 965 |
-
gmm.train(K=4)
|
| 966 |
-
logger.info("GMM training complete")
|
| 967 |
-
|
| 968 |
-
# ===== STEP 5: Save artifacts =====
|
| 969 |
-
camera_path = os.path.join("models", camera_name)
|
| 970 |
-
os.makedirs(camera_path, exist_ok=True)
|
| 971 |
-
|
| 972 |
-
# 1. Save GMM model
|
| 973 |
-
gmm_path = os.path.join(camera_path, "gmm_model.joblib")
|
| 974 |
-
gmm.save_model(gmm_path)
|
| 975 |
-
|
| 976 |
-
# 2. Save mask (polygon-based, not rectangular)
|
| 977 |
-
mask_path = os.path.join(camera_path, "mask.png")
|
| 978 |
-
cv2.imwrite(mask_path, final_mask)
|
| 979 |
-
logger.info(f"Saved {len(corner_points)}-point polygon mask to {mask_path}")
|
| 980 |
-
|
| 981 |
-
# 3. Create thumbnail with polygon overlay
|
| 982 |
-
thumb_frame = first_frame.copy()
|
| 983 |
-
|
| 984 |
-
# Draw filled polygon with transparency
|
| 985 |
-
overlay = thumb_frame.copy()
|
| 986 |
-
cv2.fillPoly(overlay, [pts_polygon], (0, 255, 0))
|
| 987 |
-
cv2.addWeighted(thumb_frame, 0.7, overlay, 0.3, 0, thumb_frame)
|
| 988 |
-
|
| 989 |
-
# Draw polygon border
|
| 990 |
-
cv2.polylines(thumb_frame, [pts_polygon], True, (0, 255, 0), 3)
|
| 991 |
-
|
| 992 |
-
# Draw corner points with numbers
|
| 993 |
-
colors = [
|
| 994 |
-
(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
|
| 995 |
-
(255, 0, 255), (0, 255, 255), (128, 0, 128), (255, 128, 0)
|
| 996 |
-
]
|
| 997 |
-
|
| 998 |
-
for i, point in enumerate(corner_points):
|
| 999 |
-
x, y = point['x'], point['y']
|
| 1000 |
-
color = colors[i % len(colors)]
|
| 1001 |
-
|
| 1002 |
-
cv2.circle(thumb_frame, (x, y), 8, color, -1)
|
| 1003 |
-
cv2.circle(thumb_frame, (x, y), 10, (255, 255, 255), 2)
|
| 1004 |
-
|
| 1005 |
-
# Point number
|
| 1006 |
-
cv2.putText(thumb_frame, str(i+1), (x+15, y),
|
| 1007 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
|
| 1008 |
-
|
| 1009 |
-
# Camera name label
|
| 1010 |
-
cv2.putText(thumb_frame, camera_name, (30, 50),
|
| 1011 |
-
cv2.FONT_HERSHEY_DUPLEX, 1.5, (255, 255, 255), 3)
|
| 1012 |
-
cv2.putText(thumb_frame, camera_name, (30, 50),
|
| 1013 |
-
cv2.FONT_HERSHEY_DUPLEX, 1.5, (0, 255, 0), 2)
|
| 1014 |
-
|
| 1015 |
-
# Add point count indicator
|
| 1016 |
-
cv2.putText(thumb_frame, f"{len(corner_points)} points", (30, 90),
|
| 1017 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
|
| 1018 |
-
|
| 1019 |
-
thumb_path = os.path.join(camera_path, "thumb.png")
|
| 1020 |
-
cv2.imwrite(thumb_path, thumb_frame)
|
| 1021 |
-
|
| 1022 |
-
# 4. Save polygon metadata (NEW - for reconstruction)
|
| 1023 |
-
metadata = {
|
| 1024 |
-
"camera_name": camera_name,
|
| 1025 |
-
"num_points": len(corner_points),
|
| 1026 |
-
"corner_points": corner_points,
|
| 1027 |
-
"frame_dimensions": {"width": w, "height": h},
|
| 1028 |
-
"use_perspective_warp": use_perspective_warp,
|
| 1029 |
-
"training_date": datetime.now().isoformat()
|
| 1030 |
-
}
|
| 1031 |
-
|
| 1032 |
-
import json
|
| 1033 |
-
metadata_path = os.path.join(camera_path, "metadata.json")
|
| 1034 |
-
with open(metadata_path, 'w') as f:
|
| 1035 |
-
json.dump(metadata, f, indent=2)
|
| 1036 |
-
|
| 1037 |
-
logger.info(f"Saved metadata to {metadata_path}")
|
| 1038 |
-
|
| 1039 |
-
# Cleanup
|
| 1040 |
-
import shutil
|
| 1041 |
-
shutil.rmtree(temp_dir)
|
| 1042 |
-
|
| 1043 |
-
logger.info(f"✅ Camera '{camera_name}' training complete with {len(corner_points)}-point polygon!")
|
| 1044 |
-
|
| 1045 |
-
return {
|
| 1046 |
-
"success": True,
|
| 1047 |
-
"camera_name": camera_name,
|
| 1048 |
-
"camera_path": camera_path,
|
| 1049 |
-
"frames_captured": frame_count,
|
| 1050 |
-
"polygon_points": len(corner_points),
|
| 1051 |
-
"use_perspective_warp": use_perspective_warp,
|
| 1052 |
-
"model_files": {
|
| 1053 |
-
"gmm_model": gmm_path,
|
| 1054 |
-
"mask": mask_path,
|
| 1055 |
-
"thumbnail": thumb_path,
|
| 1056 |
-
"metadata": metadata_path
|
| 1057 |
-
}
|
| 1058 |
-
}
|
| 1059 |
-
|
| 1060 |
-
except Exception as e:
|
| 1061 |
-
logger.error(f"GMM training error: {e}")
|
| 1062 |
-
import traceback
|
| 1063 |
-
logger.error(traceback.format_exc())
|
| 1064 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1065 |
-
|
| 1066 |
-
|
| 1067 |
-
@app.get("/cameras")
|
| 1068 |
-
async def list_cameras():
|
| 1069 |
-
"""
|
| 1070 |
-
List all trained cameras with their metadata.
|
| 1071 |
-
|
| 1072 |
-
Returns:
|
| 1073 |
-
{
|
| 1074 |
-
"cameras": [
|
| 1075 |
-
{
|
| 1076 |
-
"name": "kitchen",
|
| 1077 |
-
"path": "models/kitchen",
|
| 1078 |
-
"thumbnail": "models/kitchen/thumb.png",
|
| 1079 |
-
"has_gmm_model": true,
|
| 1080 |
-
"has_mask": true
|
| 1081 |
-
}
|
| 1082 |
-
]
|
| 1083 |
-
}
|
| 1084 |
-
"""
|
| 1085 |
-
try:
|
| 1086 |
-
cameras = []
|
| 1087 |
-
models_dir = "models"
|
| 1088 |
-
|
| 1089 |
-
if not os.path.exists(models_dir):
|
| 1090 |
-
return {"cameras": []}
|
| 1091 |
-
|
| 1092 |
-
for camera_name in os.listdir(models_dir):
|
| 1093 |
-
camera_path = os.path.join(models_dir, camera_name)
|
| 1094 |
-
|
| 1095 |
-
if not os.path.isdir(camera_path):
|
| 1096 |
-
continue
|
| 1097 |
-
|
| 1098 |
-
gmm_path = os.path.join(camera_path, "gmm_model.joblib")
|
| 1099 |
-
mask_path = os.path.join(camera_path, "mask.png")
|
| 1100 |
-
thumb_path = os.path.join(camera_path, "thumb.png")
|
| 1101 |
-
|
| 1102 |
-
cameras.append({
|
| 1103 |
-
"name": camera_name,
|
| 1104 |
-
"path": camera_path,
|
| 1105 |
-
"thumbnail": thumb_path if os.path.exists(thumb_path) else None,
|
| 1106 |
-
"has_gmm_model": os.path.exists(gmm_path),
|
| 1107 |
-
"has_mask": os.path.exists(mask_path)
|
| 1108 |
-
})
|
| 1109 |
-
|
| 1110 |
-
return {"cameras": cameras}
|
| 1111 |
-
|
| 1112 |
-
except Exception as e:
|
| 1113 |
-
logger.error(f"List cameras error: {e}")
|
| 1114 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1115 |
-
|
| 1116 |
-
|
| 1117 |
-
@app.delete("/camera/{camera_name}")
|
| 1118 |
-
async def delete_camera(camera_name: str):
|
| 1119 |
-
"""
|
| 1120 |
-
Delete a trained camera and all its files.
|
| 1121 |
-
"""
|
| 1122 |
-
try:
|
| 1123 |
-
camera_path = os.path.join("models", camera_name)
|
| 1124 |
-
|
| 1125 |
-
if not os.path.exists(camera_path):
|
| 1126 |
-
raise HTTPException(status_code=404, detail=f"Camera '{camera_name}' not found")
|
| 1127 |
-
|
| 1128 |
-
import shutil
|
| 1129 |
-
shutil.rmtree(camera_path)
|
| 1130 |
-
|
| 1131 |
-
logger.info(f"Deleted camera: {camera_name}")
|
| 1132 |
-
|
| 1133 |
-
return {
|
| 1134 |
-
"success": True,
|
| 1135 |
-
"message": f"Camera '{camera_name}' deleted successfully"
|
| 1136 |
-
}
|
| 1137 |
-
|
| 1138 |
-
except Exception as e:
|
| 1139 |
-
logger.error(f"Delete camera error: {e}")
|
| 1140 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1141 |
-
|
| 1142 |
-
|
| 1143 |
-
@app.get("/health")
|
| 1144 |
-
async def health_check():
|
| 1145 |
-
"""Health check endpoint."""
|
| 1146 |
-
with streams_lock:
|
| 1147 |
-
stream_count = len(active_streams)
|
| 1148 |
-
|
| 1149 |
-
return {
|
| 1150 |
-
"status": "healthy",
|
| 1151 |
-
"active_streams": stream_count,
|
| 1152 |
-
"timestamp": datetime.now().isoformat()
|
| 1153 |
-
}
|
| 1154 |
-
|
| 1155 |
-
|
| 1156 |
-
if __name__ == "__main__":
|
| 1157 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from collections import deque
|
| 5 |
+
from threading import Thread, Lock
|
| 6 |
+
from queue import Queue
|
| 7 |
+
import time
|
| 8 |
+
import logging
|
| 9 |
+
import os
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
|
| 13 |
+
from fastapi import FastAPI, HTTPException
|
| 14 |
+
from fastapi.responses import FileResponse, StreamingResponse
|
| 15 |
+
import asyncio
|
| 16 |
+
import uvicorn
|
| 17 |
+
from pydantic import BaseModel
|
| 18 |
+
from typing import Optional
|
| 19 |
+
import requests
|
| 20 |
+
from datetime import datetime, timedelta
|
| 21 |
+
|
| 22 |
+
# ===== IMPORT THE DISCORD ALERT MANAGER =====
|
| 23 |
+
from send_discord import DiscordAlertManager
|
| 24 |
+
|
| 25 |
+
logging.basicConfig(level=logging.INFO)
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
+
|
| 28 |
+
# ==================== DATA MODELS ====================
|
| 29 |
+
|
| 30 |
+
class StreamStartRequest(BaseModel):
|
| 31 |
+
"""Start streaming request."""
|
| 32 |
+
rtmp_input_url: str
|
| 33 |
+
camera_path: str # e.g., "models/cam1" - will auto-pick gmm_model.joblib and mask.png
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class StreamStopRequest(BaseModel):
|
| 37 |
+
"""Stop streaming request."""
|
| 38 |
+
stream_id: str
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class StreamStatusResponse(BaseModel):
|
| 42 |
+
"""Stream status response."""
|
| 43 |
+
stream_id: str
|
| 44 |
+
status: str
|
| 45 |
+
fps: float
|
| 46 |
+
buffered_frames: int
|
| 47 |
+
queue_size: int
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# ==================== CIRCULAR BUFFER ====================
|
| 51 |
+
|
| 52 |
+
class CircularFrameBuffer:
|
| 53 |
+
"""Fixed-size buffer for storing processed frames."""
|
| 54 |
+
|
| 55 |
+
def __init__(self, max_frames: int = 30):
|
| 56 |
+
self.max_frames = max_frames
|
| 57 |
+
self.frames = deque(maxlen=max_frames)
|
| 58 |
+
self.lock = Lock()
|
| 59 |
+
self.sequence_ids = deque(maxlen=max_frames)
|
| 60 |
+
|
| 61 |
+
def add_frame(self, frame: np.ndarray, seq_id: int) -> None:
|
| 62 |
+
"""Add processed frame to buffer."""
|
| 63 |
+
with self.lock:
|
| 64 |
+
self.frames.append(frame.copy())
|
| 65 |
+
self.sequence_ids.append(seq_id)
|
| 66 |
+
|
| 67 |
+
def get_latest(self) -> tuple:
|
| 68 |
+
"""Get most recent frame."""
|
| 69 |
+
with self.lock:
|
| 70 |
+
if len(self.frames) > 0:
|
| 71 |
+
return self.frames[-1].copy(), self.sequence_ids[-1]
|
| 72 |
+
return None, None
|
| 73 |
+
|
| 74 |
+
def clear(self) -> None:
|
| 75 |
+
"""Clear buffer."""
|
| 76 |
+
with self.lock:
|
| 77 |
+
self.frames.clear()
|
| 78 |
+
self.sequence_ids.clear()
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# ==================== LIVE MONITOR ====================
|
| 82 |
+
|
| 83 |
+
class LiveHygieneMonitor:
|
| 84 |
+
"""Production-ready hygiene monitor for live streams."""
|
| 85 |
+
|
| 86 |
+
def __init__(self, segformer_path: str, max_buffer_frames: int = 30):
|
| 87 |
+
self.segformer_path = segformer_path
|
| 88 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 89 |
+
|
| 90 |
+
# Model loading
|
| 91 |
+
self.model = None
|
| 92 |
+
self.processor = None
|
| 93 |
+
self._load_segformer()
|
| 94 |
+
|
| 95 |
+
# GMM components
|
| 96 |
+
self.gmm_model = None
|
| 97 |
+
self.gmm_heatmap = None
|
| 98 |
+
self.table_mask = None
|
| 99 |
+
|
| 100 |
+
# Live streaming state
|
| 101 |
+
self.frame_buffer = CircularFrameBuffer(max_frames=max_buffer_frames)
|
| 102 |
+
self.input_queue = Queue(maxsize=5)
|
| 103 |
+
self.processing_thread = None
|
| 104 |
+
self.is_running = False
|
| 105 |
+
|
| 106 |
+
# Frame sequence tracking
|
| 107 |
+
self.frame_sequence = 0
|
| 108 |
+
self.frame_lock = Lock()
|
| 109 |
+
|
| 110 |
+
# State management
|
| 111 |
+
self.detection_frames_count = 0
|
| 112 |
+
self.no_detection_frames_count = 0
|
| 113 |
+
self.cleaning_active = False
|
| 114 |
+
self.cleaning_start_threshold = 4
|
| 115 |
+
self.cleaning_stop_threshold = 12
|
| 116 |
+
|
| 117 |
+
# Performance tracking
|
| 118 |
+
self.frame_times = deque(maxlen=30)
|
| 119 |
+
self.last_frame_time = time.time()
|
| 120 |
+
|
| 121 |
+
# Optimization flags
|
| 122 |
+
self.skip_segformer_every_n_frames = 2
|
| 123 |
+
self.segformer_skip_counter = 0
|
| 124 |
+
self.last_cloth_mask = None
|
| 125 |
+
|
| 126 |
+
# Visualization settings
|
| 127 |
+
self.show_cloth_detection = True
|
| 128 |
+
self.erasure_radius_factor = 0.2
|
| 129 |
+
self.gaussian_sigma_factor = 0.8
|
| 130 |
+
|
| 131 |
+
self.tracker = None
|
| 132 |
+
self.track_trajectories = {}
|
| 133 |
+
self.max_trajectory_length = 40
|
| 134 |
+
self.track_colors = {}
|
| 135 |
+
|
| 136 |
+
# Alert manager - ADD THIS
|
| 137 |
+
self.alert_manager = None
|
| 138 |
+
self.current_camera_name = "Default Camera"
|
| 139 |
+
|
| 140 |
+
logger.info(f"Live Monitor initialized on {self.device}")
|
| 141 |
+
|
| 142 |
+
def _load_segformer(self):
|
| 143 |
+
"""Load SegFormer model."""
|
| 144 |
+
try:
|
| 145 |
+
self.model = SegformerForSemanticSegmentation.from_pretrained(self.segformer_path)
|
| 146 |
+
self.processor = SegformerImageProcessor(do_reduce_labels=False)
|
| 147 |
+
self.model.to(self.device)
|
| 148 |
+
self.model.eval()
|
| 149 |
+
logger.info(f"SegFormer loaded on {self.device}")
|
| 150 |
+
except Exception as e:
|
| 151 |
+
logger.error(f"Failed to load SegFormer: {e}")
|
| 152 |
+
|
| 153 |
+
def _init_tracker(self):
|
| 154 |
+
"""Lazy-init tracker."""
|
| 155 |
+
if self.tracker is None:
|
| 156 |
+
from deep_sort_realtime.deepsort_tracker import DeepSort
|
| 157 |
+
self.tracker = DeepSort(
|
| 158 |
+
max_age=15,
|
| 159 |
+
n_init=2,
|
| 160 |
+
nms_max_overlap=0.7,
|
| 161 |
+
max_cosine_distance=0.4,
|
| 162 |
+
nn_budget=50,
|
| 163 |
+
embedder="mobilenet",
|
| 164 |
+
half=True,
|
| 165 |
+
embedder_gpu=torch.cuda.is_available()
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
def load_gmm_model(self, gmm_path: str) -> bool:
|
| 169 |
+
"""Load GMM model."""
|
| 170 |
+
try:
|
| 171 |
+
from GMM import GMM
|
| 172 |
+
self.gmm_model = GMM.load_model(gmm_path)
|
| 173 |
+
if self.gmm_model.img_shape:
|
| 174 |
+
h, w = self.gmm_model.img_shape[:2]
|
| 175 |
+
self.gmm_heatmap = np.zeros((h, w), dtype=np.float32)
|
| 176 |
+
logger.info("GMM model loaded")
|
| 177 |
+
return True
|
| 178 |
+
except Exception as e:
|
| 179 |
+
logger.error(f"Failed to load GMM: {e}")
|
| 180 |
+
return False
|
| 181 |
+
|
| 182 |
+
def load_table_mask(self, mask_path: str) -> bool:
|
| 183 |
+
"""Load table mask."""
|
| 184 |
+
try:
|
| 185 |
+
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
|
| 186 |
+
self.table_mask = (mask > 128).astype(np.uint8)
|
| 187 |
+
logger.info(f"Table mask loaded: {mask.shape}")
|
| 188 |
+
return True
|
| 189 |
+
except Exception as e:
|
| 190 |
+
logger.error(f"Failed to load mask: {e}")
|
| 191 |
+
return False
|
| 192 |
+
|
| 193 |
+
def add_frame(self, frame: np.ndarray) -> None:
|
| 194 |
+
"""Add incoming frame (non-blocking)."""
|
| 195 |
+
try:
|
| 196 |
+
self.input_queue.put_nowait(frame)
|
| 197 |
+
except:
|
| 198 |
+
pass
|
| 199 |
+
|
| 200 |
+
def start_processing(self) -> None:
|
| 201 |
+
"""Start background processing."""
|
| 202 |
+
if self.is_running:
|
| 203 |
+
return
|
| 204 |
+
self.is_running = True
|
| 205 |
+
self.processing_thread = Thread(target=self._process_loop, daemon=True)
|
| 206 |
+
self.processing_thread.start()
|
| 207 |
+
logger.info("Processing thread started")
|
| 208 |
+
|
| 209 |
+
def stop_processing(self) -> None:
|
| 210 |
+
"""Stop processing."""
|
| 211 |
+
self.is_running = False
|
| 212 |
+
if self.processing_thread:
|
| 213 |
+
self.processing_thread.join(timeout=5)
|
| 214 |
+
self.frame_buffer.clear()
|
| 215 |
+
logger.info("Processing stopped")
|
| 216 |
+
|
| 217 |
+
def _get_next_sequence_id(self) -> int:
|
| 218 |
+
"""Thread-safe sequence ID."""
|
| 219 |
+
with self.frame_lock:
|
| 220 |
+
self.frame_sequence += 1
|
| 221 |
+
return self.frame_sequence
|
| 222 |
+
|
| 223 |
+
def _process_loop(self) -> None:
|
| 224 |
+
"""Main processing loop."""
|
| 225 |
+
while self.is_running:
|
| 226 |
+
try:
|
| 227 |
+
frame = self.input_queue.get(timeout=1)
|
| 228 |
+
seq_id = self._get_next_sequence_id()
|
| 229 |
+
|
| 230 |
+
frame = self._resize_frame(frame, target_width=1024)
|
| 231 |
+
cloth_mask = self._detect_cloth_fast(frame)
|
| 232 |
+
cleaning_status = self._update_cleaning_status(cloth_mask)
|
| 233 |
+
|
| 234 |
+
tracks = None
|
| 235 |
+
if self.cleaning_active:
|
| 236 |
+
self._init_tracker()
|
| 237 |
+
tracks = self._track_cloth(frame, cloth_mask)
|
| 238 |
+
|
| 239 |
+
self._update_gmm_fast(frame, cloth_mask, tracks)
|
| 240 |
+
viz_frame = self._create_visualization(frame, cloth_mask, tracks, cleaning_status)
|
| 241 |
+
self.frame_buffer.add_frame(viz_frame, seq_id)
|
| 242 |
+
|
| 243 |
+
elapsed = time.time() - self.last_frame_time
|
| 244 |
+
self.frame_times.append(elapsed)
|
| 245 |
+
self.last_frame_time = time.time()
|
| 246 |
+
|
| 247 |
+
if seq_id % 30 == 0:
|
| 248 |
+
avg_time = np.mean(self.frame_times)
|
| 249 |
+
fps = 1.0 / avg_time if avg_time > 0 else 0
|
| 250 |
+
logger.info(f"Seq {seq_id} | {fps:.1f} FPS | {cleaning_status}")
|
| 251 |
+
|
| 252 |
+
except Exception as e:
|
| 253 |
+
logger.error(f"Processing error: {e}")
|
| 254 |
+
continue
|
| 255 |
+
|
| 256 |
+
def _resize_frame(self, frame: np.ndarray, target_width: int = 1024) -> np.ndarray:
|
| 257 |
+
"""Resize frame."""
|
| 258 |
+
h, w = frame.shape[:2]
|
| 259 |
+
if w > target_width:
|
| 260 |
+
scale = target_width / w
|
| 261 |
+
new_h = int(h * scale)
|
| 262 |
+
return cv2.resize(frame, (target_width, new_h))
|
| 263 |
+
return frame
|
| 264 |
+
|
| 265 |
+
def _detect_cloth_fast(self, frame: np.ndarray) -> np.ndarray:
|
| 266 |
+
"""Fast cloth detection with skipping."""
|
| 267 |
+
if self.model is None:
|
| 268 |
+
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 269 |
+
|
| 270 |
+
self.segformer_skip_counter += 1
|
| 271 |
+
if self.segformer_skip_counter < self.skip_segformer_every_n_frames:
|
| 272 |
+
if self.last_cloth_mask is not None:
|
| 273 |
+
return self.last_cloth_mask
|
| 274 |
+
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 275 |
+
|
| 276 |
+
self.segformer_skip_counter = 0
|
| 277 |
+
|
| 278 |
+
try:
|
| 279 |
+
height, width = frame.shape[:2]
|
| 280 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 281 |
+
pil_image = Image.fromarray(frame_rgb)
|
| 282 |
+
|
| 283 |
+
with torch.no_grad():
|
| 284 |
+
inputs = self.processor(images=pil_image, return_tensors="pt")
|
| 285 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 286 |
+
outputs = self.model(**inputs)
|
| 287 |
+
logits = outputs.logits
|
| 288 |
+
|
| 289 |
+
upsampled = torch.nn.functional.interpolate(
|
| 290 |
+
logits, size=(height, width), mode="bilinear", align_corners=False
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
cloth_mask = (upsampled.argmax(dim=1)[0].cpu().numpy() == 1).astype(np.uint8)
|
| 294 |
+
|
| 295 |
+
if self.table_mask is not None:
|
| 296 |
+
if self.table_mask.shape != cloth_mask.shape:
|
| 297 |
+
table_resized = cv2.resize(self.table_mask, (width, height))
|
| 298 |
+
else:
|
| 299 |
+
table_resized = self.table_mask
|
| 300 |
+
cloth_mask = cloth_mask * table_resized
|
| 301 |
+
|
| 302 |
+
self.last_cloth_mask = cloth_mask
|
| 303 |
+
return cloth_mask
|
| 304 |
+
|
| 305 |
+
except Exception as e:
|
| 306 |
+
logger.error(f"Cloth detection error: {e}")
|
| 307 |
+
return np.zeros((frame.shape[0], frame.shape[1]), dtype=np.uint8)
|
| 308 |
+
|
| 309 |
+
def _track_cloth(self, frame: np.ndarray, cloth_mask: np.ndarray) -> list:
|
| 310 |
+
"""Fast tracking."""
|
| 311 |
+
if self.tracker is None:
|
| 312 |
+
return []
|
| 313 |
+
|
| 314 |
+
try:
|
| 315 |
+
contours, _ = cv2.findContours(cloth_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 316 |
+
detections = []
|
| 317 |
+
|
| 318 |
+
for contour in contours:
|
| 319 |
+
area = cv2.contourArea(contour)
|
| 320 |
+
if area < 150:
|
| 321 |
+
continue
|
| 322 |
+
x, y, w, h = cv2.boundingRect(contour)
|
| 323 |
+
if w > 0 and h > 0:
|
| 324 |
+
detections.append(([x, y, w, h], 0.95, 'cloth'))
|
| 325 |
+
|
| 326 |
+
if not detections:
|
| 327 |
+
return []
|
| 328 |
+
|
| 329 |
+
tracks = self.tracker.update_tracks(detections, frame=frame)
|
| 330 |
+
|
| 331 |
+
height, width = frame.shape[:2]
|
| 332 |
+
for track in tracks:
|
| 333 |
+
if not track.is_confirmed():
|
| 334 |
+
continue
|
| 335 |
+
|
| 336 |
+
track_id = track.track_id
|
| 337 |
+
bbox = track.to_ltrb()
|
| 338 |
+
cx = int((bbox[0] + bbox[2]) / 2)
|
| 339 |
+
cy = int((bbox[1] + bbox[3]) / 2)
|
| 340 |
+
|
| 341 |
+
if 0 <= cx < width and 0 <= cy < height:
|
| 342 |
+
if track_id not in self.track_trajectories:
|
| 343 |
+
self.track_trajectories[track_id] = deque(maxlen=self.max_trajectory_length)
|
| 344 |
+
self.track_colors[track_id] = (255, 255, 0)
|
| 345 |
+
self.track_trajectories[track_id].append((cx, cy))
|
| 346 |
+
|
| 347 |
+
active_ids = {track.track_id for track in tracks if track.is_confirmed()}
|
| 348 |
+
dead_ids = set(self.track_trajectories.keys()) - active_ids
|
| 349 |
+
for dead_id in dead_ids:
|
| 350 |
+
self.track_trajectories.pop(dead_id, None)
|
| 351 |
+
self.track_colors.pop(dead_id, None)
|
| 352 |
+
|
| 353 |
+
return tracks
|
| 354 |
+
|
| 355 |
+
except Exception as e:
|
| 356 |
+
logger.error(f"Tracking error: {e}")
|
| 357 |
+
return []
|
| 358 |
+
|
| 359 |
+
def _update_gmm_fast(self, frame: np.ndarray, cloth_mask: np.ndarray, tracks: list) -> None:
|
| 360 |
+
"""Lightweight GMM update."""
|
| 361 |
+
if self.gmm_model is None:
|
| 362 |
+
return
|
| 363 |
+
|
| 364 |
+
try:
|
| 365 |
+
height, width = frame.shape[:2]
|
| 366 |
+
table_mask = None
|
| 367 |
+
if self.table_mask is not None:
|
| 368 |
+
if self.table_mask.shape != (height, width):
|
| 369 |
+
table_mask = cv2.resize(self.table_mask, (width, height))
|
| 370 |
+
else:
|
| 371 |
+
table_mask = self.table_mask
|
| 372 |
+
|
| 373 |
+
_, self.gmm_heatmap = self.gmm_model.infer(
|
| 374 |
+
frame, heatmap=self.gmm_heatmap,
|
| 375 |
+
alpha_start=0.008, alpha_end=0.0004,
|
| 376 |
+
table_mask=table_mask
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
if self.cleaning_active and tracks:
|
| 380 |
+
for track in tracks:
|
| 381 |
+
if not track.is_confirmed():
|
| 382 |
+
continue
|
| 383 |
+
|
| 384 |
+
track_id = track.track_id
|
| 385 |
+
if track_id not in self.track_trajectories:
|
| 386 |
+
continue
|
| 387 |
+
|
| 388 |
+
trajectory = list(self.track_trajectories[track_id])
|
| 389 |
+
if len(trajectory) < 2:
|
| 390 |
+
continue
|
| 391 |
+
|
| 392 |
+
bbox = track.to_ltrb()
|
| 393 |
+
w = bbox[2] - bbox[0]
|
| 394 |
+
h = bbox[3] - bbox[1]
|
| 395 |
+
|
| 396 |
+
radius = int(min(w, h) * self.erasure_radius_factor)
|
| 397 |
+
radius = max(radius, 12)
|
| 398 |
+
|
| 399 |
+
if radius <= 0 or w <= 0 or h <= 0:
|
| 400 |
+
continue
|
| 401 |
+
|
| 402 |
+
for i in range(len(trajectory) - 1):
|
| 403 |
+
self._erase_at_point(trajectory[i], radius, table_mask)
|
| 404 |
+
|
| 405 |
+
except Exception as e:
|
| 406 |
+
logger.error(f"GMM update error: {e}")
|
| 407 |
+
|
| 408 |
+
def _erase_at_point(self, point: tuple, radius: int, table_mask: np.ndarray) -> None:
|
| 409 |
+
"""Fast point-based erasure."""
|
| 410 |
+
if self.gmm_heatmap is None or radius <= 0:
|
| 411 |
+
return
|
| 412 |
+
|
| 413 |
+
x, y = point
|
| 414 |
+
height, width = self.gmm_heatmap.shape
|
| 415 |
+
|
| 416 |
+
y_min = max(0, y - radius)
|
| 417 |
+
y_max = min(height, y + radius)
|
| 418 |
+
x_min = max(0, x - radius)
|
| 419 |
+
x_max = min(width, x + radius)
|
| 420 |
+
|
| 421 |
+
if y_min >= y_max or x_min >= x_max:
|
| 422 |
+
return
|
| 423 |
+
|
| 424 |
+
y_indices, x_indices = np.ogrid[y_min:y_max, x_min:x_max]
|
| 425 |
+
distance_sq = (x_indices - x)**2 + (y_indices - y)**2
|
| 426 |
+
|
| 427 |
+
gaussian = np.exp(-distance_sq / (2 * (radius * self.gaussian_sigma_factor)**2))
|
| 428 |
+
|
| 429 |
+
if table_mask is not None:
|
| 430 |
+
gaussian = gaussian * table_mask[y_min:y_max, x_min:x_max]
|
| 431 |
+
|
| 432 |
+
decay = 0.025 * gaussian
|
| 433 |
+
self.gmm_heatmap[y_min:y_max, x_min:x_max] = np.maximum(
|
| 434 |
+
0, self.gmm_heatmap[y_min:y_max, x_min:x_max] - decay
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
def _update_cleaning_status(self, cloth_mask: np.ndarray) -> str:
|
| 438 |
+
"""Update cleaning status."""
|
| 439 |
+
has_cloth = np.sum(cloth_mask) > 100
|
| 440 |
+
|
| 441 |
+
if has_cloth:
|
| 442 |
+
self.detection_frames_count += 1
|
| 443 |
+
self.no_detection_frames_count = 0
|
| 444 |
+
else:
|
| 445 |
+
self.no_detection_frames_count += 1
|
| 446 |
+
self.detection_frames_count = 0
|
| 447 |
+
|
| 448 |
+
if not self.cleaning_active and self.detection_frames_count >= self.cleaning_start_threshold:
|
| 449 |
+
self.cleaning_active = True
|
| 450 |
+
return "CLEANING STARTED"
|
| 451 |
+
elif self.cleaning_active and self.no_detection_frames_count >= self.cleaning_stop_threshold:
|
| 452 |
+
self.cleaning_active = False
|
| 453 |
+
return "CLEANING STOPPED"
|
| 454 |
+
|
| 455 |
+
return "CLEANING ACTIVE" if self.cleaning_active else "NO CLEANING"
|
| 456 |
+
|
| 457 |
+
def _create_visualization(self, frame: np.ndarray, cloth_mask: np.ndarray,
|
| 458 |
+
tracks: list, cleaning_status: str) -> np.ndarray:
|
| 459 |
+
"""Create fast visualization."""
|
| 460 |
+
result = frame.copy()
|
| 461 |
+
|
| 462 |
+
if np.sum(cloth_mask) > 0:
|
| 463 |
+
overlay = result.copy()
|
| 464 |
+
cloth_pixels = cloth_mask > 0
|
| 465 |
+
overlay[cloth_pixels] = [0, 255, 0]
|
| 466 |
+
result[cloth_pixels] = cv2.addWeighted(
|
| 467 |
+
frame[cloth_pixels], 0.7, overlay[cloth_pixels], 0.3, 0
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
if self.gmm_heatmap is not None and self.gmm_heatmap.max() > 0:
|
| 471 |
+
height, width = result.shape[:2]
|
| 472 |
+
heatmap_resized = cv2.resize(self.gmm_heatmap, (width, height))
|
| 473 |
+
heatmap_colored = cv2.applyColorMap(
|
| 474 |
+
(heatmap_resized * 255).astype(np.uint8), cv2.COLORMAP_JET
|
| 475 |
+
)
|
| 476 |
+
significant = heatmap_resized > 0.1
|
| 477 |
+
result[significant] = cv2.addWeighted(
|
| 478 |
+
frame[significant], 0.6, heatmap_colored[significant], 0.4, 0
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
if tracks:
|
| 482 |
+
for track in tracks:
|
| 483 |
+
if track.is_confirmed():
|
| 484 |
+
bbox = track.to_ltrb()
|
| 485 |
+
cx, cy = int((bbox[0] + bbox[2])/2), int((bbox[1] + bbox[3])/2)
|
| 486 |
+
cv2.circle(result, (cx, cy), 4, (0, 0, 255), -1)
|
| 487 |
+
|
| 488 |
+
status_color = (0, 255, 0) if "ACTIVE" in cleaning_status else (150, 150, 150)
|
| 489 |
+
cv2.putText(result, cleaning_status, (20, 40),
|
| 490 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, status_color, 2)
|
| 491 |
+
|
| 492 |
+
return result
|
| 493 |
+
|
| 494 |
+
def get_latest_frame(self) -> np.ndarray:
|
| 495 |
+
"""Get latest processed frame."""
|
| 496 |
+
frame, _ = self.frame_buffer.get_latest()
|
| 497 |
+
return frame
|
| 498 |
+
|
| 499 |
+
def get_stats(self) -> dict:
|
| 500 |
+
"""Get stats."""
|
| 501 |
+
with self.frame_buffer.lock:
|
| 502 |
+
avg_time = np.mean(self.frame_times) if len(self.frame_times) > 0 else 0.033
|
| 503 |
+
fps = 1.0 / avg_time if avg_time > 0 else 0
|
| 504 |
+
return {
|
| 505 |
+
"buffered_frames": len(self.frame_buffer.frames),
|
| 506 |
+
"avg_fps": fps,
|
| 507 |
+
"queue_size": self.input_queue.qsize(),
|
| 508 |
+
"is_running": self.is_running
|
| 509 |
+
}
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
# ==================== FASTAPI APP ====================
|
| 513 |
+
|
| 514 |
+
app = FastAPI(title="Hygiene Monitor Live Stream", version="1.0.0")
|
| 515 |
+
|
| 516 |
+
# Active streams: {stream_id: {"monitor": LiveHygieneMonitor, "cap": VideoCapture, "thread": Thread}}
|
| 517 |
+
active_streams = {}
|
| 518 |
+
streams_lock = Lock()
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
def _get_model_files(camera_path: str) -> tuple:
|
| 522 |
+
"""Extract GMM and mask paths from camera directory."""
|
| 523 |
+
if not os.path.isdir(camera_path):
|
| 524 |
+
raise ValueError(f"Camera path not found: {camera_path}")
|
| 525 |
+
|
| 526 |
+
gmm_path = os.path.join(camera_path, "gmm_model.joblib")
|
| 527 |
+
mask_path = os.path.join(camera_path, "mask.png")
|
| 528 |
+
|
| 529 |
+
if not os.path.exists(gmm_path):
|
| 530 |
+
raise ValueError(f"GMM model not found: {gmm_path}")
|
| 531 |
+
if not os.path.exists(mask_path):
|
| 532 |
+
raise ValueError(f"Mask not found: {mask_path}")
|
| 533 |
+
|
| 534 |
+
return gmm_path, mask_path
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
def _stream_worker(stream_id: str, rtmp_url: str, gmm_path: str, mask_path: str):
|
| 538 |
+
"""Background worker for streaming."""
|
| 539 |
+
try:
|
| 540 |
+
monitor = LiveHygieneMonitor(
|
| 541 |
+
segformer_path="models/segformer_model",
|
| 542 |
+
max_buffer_frames=30
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
if not monitor.load_gmm_model(gmm_path):
|
| 546 |
+
logger.error(f"[{stream_id}] Failed to load GMM model")
|
| 547 |
+
return
|
| 548 |
+
|
| 549 |
+
if not monitor.load_table_mask(mask_path):
|
| 550 |
+
logger.error(f"[{stream_id}] Failed to load mask")
|
| 551 |
+
return
|
| 552 |
+
|
| 553 |
+
# === INITIALIZE ALERT MANAGER - ADD THIS ===
|
| 554 |
+
webhook_url = os.getenv("DISCORD_WEBHOOK_URL") # From environment
|
| 555 |
+
if webhook_url:
|
| 556 |
+
monitor.alert_manager = DiscordAlertManager(webhook_url=webhook_url)
|
| 557 |
+
monitor.current_camera_name = stream_id # Or pass from request
|
| 558 |
+
logger.info(f"[{stream_id}] Alert manager initialized")
|
| 559 |
+
|
| 560 |
+
monitor.start_processing()
|
| 561 |
+
|
| 562 |
+
cap = cv2.VideoCapture(rtmp_url)
|
| 563 |
+
if not cap.isOpened():
|
| 564 |
+
logger.error(f"[{stream_id}] Failed to connect to RTMP: {rtmp_url}")
|
| 565 |
+
monitor.stop_processing()
|
| 566 |
+
return
|
| 567 |
+
|
| 568 |
+
# Update active stream
|
| 569 |
+
with streams_lock:
|
| 570 |
+
if stream_id in active_streams:
|
| 571 |
+
active_streams[stream_id]["monitor"] = monitor
|
| 572 |
+
active_streams[stream_id]["cap"] = cap
|
| 573 |
+
active_streams[stream_id]["connected"] = True
|
| 574 |
+
|
| 575 |
+
frame_count = 0
|
| 576 |
+
logger.info(f"[{stream_id}] Connected to {rtmp_url}")
|
| 577 |
+
|
| 578 |
+
while True:
|
| 579 |
+
with streams_lock:
|
| 580 |
+
if stream_id not in active_streams or not active_streams[stream_id]["running"]:
|
| 581 |
+
break
|
| 582 |
+
|
| 583 |
+
ret, frame = cap.read()
|
| 584 |
+
if not ret:
|
| 585 |
+
logger.warning(f"[{stream_id}] RTMP connection lost, reconnecting...")
|
| 586 |
+
cap.release()
|
| 587 |
+
time.sleep(2)
|
| 588 |
+
cap = cv2.VideoCapture(rtmp_url)
|
| 589 |
+
continue
|
| 590 |
+
|
| 591 |
+
monitor.add_frame(frame)
|
| 592 |
+
frame_count += 1
|
| 593 |
+
|
| 594 |
+
if frame_count % 100 == 0:
|
| 595 |
+
stats = monitor.get_stats()
|
| 596 |
+
logger.info(f"[{stream_id}] Frames: {frame_count}, FPS: {stats['avg_fps']:.1f}")
|
| 597 |
+
|
| 598 |
+
except Exception as e:
|
| 599 |
+
logger.error(f"[{stream_id}] Stream error: {e}")
|
| 600 |
+
|
| 601 |
+
finally:
|
| 602 |
+
with streams_lock:
|
| 603 |
+
if stream_id in active_streams:
|
| 604 |
+
if active_streams[stream_id]["cap"]:
|
| 605 |
+
active_streams[stream_id]["cap"].release()
|
| 606 |
+
if active_streams[stream_id]["monitor"]:
|
| 607 |
+
active_streams[stream_id]["monitor"].stop_processing()
|
| 608 |
+
active_streams[stream_id]["connected"] = False
|
| 609 |
+
|
| 610 |
+
logger.info(f"[{stream_id}] Stream closed")
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
# ==================== ENDPOINTS ====================
|
| 614 |
+
|
| 615 |
+
@app.post("/stream/start")
|
| 616 |
+
async def start_stream(request: StreamStartRequest):
|
| 617 |
+
"""Start a new live stream."""
|
| 618 |
+
stream_id = f"stream_{int(time.time() * 1000)}"
|
| 619 |
+
|
| 620 |
+
try:
|
| 621 |
+
# Extract model files from camera path
|
| 622 |
+
gmm_path, mask_path = _get_model_files(request.camera_path)
|
| 623 |
+
|
| 624 |
+
# Create stream entry
|
| 625 |
+
with streams_lock:
|
| 626 |
+
active_streams[stream_id] = {
|
| 627 |
+
"running": True,
|
| 628 |
+
"connected": False,
|
| 629 |
+
"monitor": None,
|
| 630 |
+
"cap": None,
|
| 631 |
+
"thread": None,
|
| 632 |
+
"camera_path": request.camera_path
|
| 633 |
+
}
|
| 634 |
+
|
| 635 |
+
# Start background worker thread
|
| 636 |
+
thread = Thread(
|
| 637 |
+
target=_stream_worker,
|
| 638 |
+
args=(stream_id, request.rtmp_input_url, gmm_path, mask_path),
|
| 639 |
+
daemon=True
|
| 640 |
+
)
|
| 641 |
+
thread.start()
|
| 642 |
+
|
| 643 |
+
with streams_lock:
|
| 644 |
+
active_streams[stream_id]["thread"] = thread
|
| 645 |
+
|
| 646 |
+
logger.info(f"Stream {stream_id} started")
|
| 647 |
+
return {
|
| 648 |
+
"stream_id": stream_id,
|
| 649 |
+
"status": "starting",
|
| 650 |
+
"message": f"Stream {stream_id} is starting, will connect to {request.rtmp_input_url}"
|
| 651 |
+
}
|
| 652 |
+
|
| 653 |
+
except Exception as e:
|
| 654 |
+
logger.error(f"Failed to start stream: {e}")
|
| 655 |
+
raise HTTPException(status_code=400, detail=str(e))
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
@app.post("/stream/stop")
|
| 659 |
+
async def stop_stream(request: StreamStopRequest):
|
| 660 |
+
"""Stop a live stream."""
|
| 661 |
+
stream_id = request.stream_id
|
| 662 |
+
|
| 663 |
+
with streams_lock:
|
| 664 |
+
if stream_id not in active_streams:
|
| 665 |
+
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 666 |
+
|
| 667 |
+
active_streams[stream_id]["running"] = False
|
| 668 |
+
|
| 669 |
+
logger.info(f"Stream {stream_id} stop requested")
|
| 670 |
+
return {"stream_id": stream_id, "status": "stopping"}
|
| 671 |
+
|
| 672 |
+
|
| 673 |
+
@app.get("/stream/status/{stream_id}")
|
| 674 |
+
async def get_stream_status(stream_id: str):
|
| 675 |
+
"""Get stream status."""
|
| 676 |
+
with streams_lock:
|
| 677 |
+
if stream_id not in active_streams:
|
| 678 |
+
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 679 |
+
|
| 680 |
+
stream_data = active_streams[stream_id]
|
| 681 |
+
monitor = stream_data["monitor"]
|
| 682 |
+
|
| 683 |
+
stats = monitor.get_stats() if monitor else {}
|
| 684 |
+
|
| 685 |
+
return {
|
| 686 |
+
"stream_id": stream_id,
|
| 687 |
+
"connected": stream_data["connected"],
|
| 688 |
+
"running": stream_data["running"],
|
| 689 |
+
"camera_path": stream_data["camera_path"],
|
| 690 |
+
"fps": stats.get("avg_fps", 0),
|
| 691 |
+
"buffered_frames": stats.get("buffered_frames", 0),
|
| 692 |
+
"queue_size": stats.get("queue_size", 0)
|
| 693 |
+
}
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
@app.get("/stream/video/{stream_id}")
|
| 697 |
+
async def stream_video(stream_id: str):
|
| 698 |
+
"""Stream video frames via MJPEG."""
|
| 699 |
+
with streams_lock:
|
| 700 |
+
if stream_id not in active_streams:
|
| 701 |
+
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 702 |
+
|
| 703 |
+
monitor = active_streams[stream_id]["monitor"]
|
| 704 |
+
|
| 705 |
+
if not monitor:
|
| 706 |
+
raise HTTPException(status_code=503, detail="Monitor not ready")
|
| 707 |
+
|
| 708 |
+
async def frame_generator():
|
| 709 |
+
while True:
|
| 710 |
+
with streams_lock:
|
| 711 |
+
if stream_id not in active_streams or not active_streams[stream_id]["running"]:
|
| 712 |
+
break
|
| 713 |
+
|
| 714 |
+
frame = monitor.get_latest_frame()
|
| 715 |
+
if frame is not None:
|
| 716 |
+
_, buffer = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 80])
|
| 717 |
+
yield (b'--frame\r\n'
|
| 718 |
+
b'Content-Type: image/jpeg\r\n'
|
| 719 |
+
b'Content-Length: ' + str(len(buffer)).encode() + b'\r\n\r\n'
|
| 720 |
+
+ buffer.tobytes() + b'\r\n')
|
| 721 |
+
else:
|
| 722 |
+
await asyncio.sleep(0.01)
|
| 723 |
+
|
| 724 |
+
return StreamingResponse(
|
| 725 |
+
frame_generator(),
|
| 726 |
+
media_type="multipart/x-mixed-replace; boundary=frame"
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
@app.get("/streams")
|
| 731 |
+
async def list_streams():
|
| 732 |
+
"""List all active streams."""
|
| 733 |
+
with streams_lock:
|
| 734 |
+
streams_list = []
|
| 735 |
+
for stream_id, data in active_streams.items():
|
| 736 |
+
monitor = data["monitor"]
|
| 737 |
+
stats = monitor.get_stats() if monitor else {}
|
| 738 |
+
|
| 739 |
+
streams_list.append({
|
| 740 |
+
"stream_id": stream_id,
|
| 741 |
+
"connected": data["connected"],
|
| 742 |
+
"running": data["running"],
|
| 743 |
+
"camera_path": data["camera_path"],
|
| 744 |
+
"fps": stats.get("avg_fps", 0),
|
| 745 |
+
"buffered_frames": stats.get("buffered_frames", 0)
|
| 746 |
+
})
|
| 747 |
+
|
| 748 |
+
return {"total_streams": len(streams_list), "streams": streams_list}
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
@app.post("/stream/restart/{stream_id}")
|
| 752 |
+
async def restart_stream(stream_id: str):
|
| 753 |
+
"""Restart a stream."""
|
| 754 |
+
with streams_lock:
|
| 755 |
+
if stream_id not in active_streams:
|
| 756 |
+
raise HTTPException(status_code=404, detail=f"Stream {stream_id} not found")
|
| 757 |
+
|
| 758 |
+
active_streams[stream_id]["running"] = False
|
| 759 |
+
|
| 760 |
+
await asyncio.sleep(2)
|
| 761 |
+
|
| 762 |
+
with streams_lock:
|
| 763 |
+
data = active_streams[stream_id]
|
| 764 |
+
data["running"] = True
|
| 765 |
+
|
| 766 |
+
return {"stream_id": stream_id, "status": "restarting"}
|
| 767 |
+
|
| 768 |
+
@app.post("/camera/extract_frame")
|
| 769 |
+
async def extract_frame_from_rtmp(request: dict):
|
| 770 |
+
"""
|
| 771 |
+
Extract a single frame from RTMP stream for corner selection.
|
| 772 |
+
|
| 773 |
+
Request body:
|
| 774 |
+
{
|
| 775 |
+
"rtmp_url": "rtmp://192.168.1.100:1935/live/kitchen",
|
| 776 |
+
"camera_name": "kitchen"
|
| 777 |
+
}
|
| 778 |
+
|
| 779 |
+
Returns:
|
| 780 |
+
{
|
| 781 |
+
"success": true,
|
| 782 |
+
"frame_base64": "base64_encoded_image",
|
| 783 |
+
"frame_dimensions": {"width": 1920, "height": 1080}
|
| 784 |
+
}
|
| 785 |
+
"""
|
| 786 |
+
try:
|
| 787 |
+
rtmp_url = request.get("rtmp_url")
|
| 788 |
+
camera_name = request.get("camera_name")
|
| 789 |
+
|
| 790 |
+
if not rtmp_url or not camera_name:
|
| 791 |
+
raise HTTPException(status_code=400, detail="Missing rtmp_url or camera_name")
|
| 792 |
+
|
| 793 |
+
# Connect to RTMP stream
|
| 794 |
+
cap = cv2.VideoCapture(rtmp_url)
|
| 795 |
+
if not cap.isOpened():
|
| 796 |
+
raise HTTPException(status_code=400, detail=f"Failed to connect to RTMP: {rtmp_url}")
|
| 797 |
+
|
| 798 |
+
# Read first frame
|
| 799 |
+
ret, frame = cap.read()
|
| 800 |
+
cap.release()
|
| 801 |
+
|
| 802 |
+
if not ret:
|
| 803 |
+
raise HTTPException(status_code=400, detail="Failed to read frame from RTMP stream")
|
| 804 |
+
import base64
|
| 805 |
+
# Convert frame to base64 for frontend display
|
| 806 |
+
_, buffer = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 95])
|
| 807 |
+
frame_base64 = base64.b64encode(buffer).decode('utf-8')
|
| 808 |
+
|
| 809 |
+
# Store frame temporarily for training (optional - could store in memory cache)
|
| 810 |
+
temp_dir = "temp_frames"
|
| 811 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 812 |
+
temp_frame_path = os.path.join(temp_dir, f"{camera_name}_reference.jpg")
|
| 813 |
+
cv2.imwrite(temp_frame_path, frame)
|
| 814 |
+
|
| 815 |
+
return {
|
| 816 |
+
"success": True,
|
| 817 |
+
"frame_base64": frame_base64,
|
| 818 |
+
"frame_dimensions": {
|
| 819 |
+
"width": frame.shape[1],
|
| 820 |
+
"height": frame.shape[0]
|
| 821 |
+
},
|
| 822 |
+
"temp_frame_path": temp_frame_path
|
| 823 |
+
}
|
| 824 |
+
|
| 825 |
+
except Exception as e:
|
| 826 |
+
logger.error(f"Extract frame error: {e}")
|
| 827 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
@app.post("/camera/train_gmm")
|
| 831 |
+
async def train_gmm_from_rtmp(request: dict):
|
| 832 |
+
"""
|
| 833 |
+
Train GMM model from RTMP stream using N corner points (minimum 4).
|
| 834 |
+
|
| 835 |
+
Request body:
|
| 836 |
+
{
|
| 837 |
+
"rtmp_url": "rtmp://192.168.1.100:1935/live/kitchen",
|
| 838 |
+
"camera_name": "kitchen",
|
| 839 |
+
"corner_points": [
|
| 840 |
+
{"x": 100, "y": 50},
|
| 841 |
+
{"x": 400, "y": 45},
|
| 842 |
+
{"x": 700, "y": 55},
|
| 843 |
+
{"x": 800, "y": 60},
|
| 844 |
+
{"x": 850, "y": 300},
|
| 845 |
+
{"x": 850, "y": 600},
|
| 846 |
+
{"x": 400, "y": 620},
|
| 847 |
+
{"x": 50, "y": 580},
|
| 848 |
+
{"x": 45, "y": 300}
|
| 849 |
+
], // Can be 4+ points for curved tables
|
| 850 |
+
"max_frames": 250,
|
| 851 |
+
"use_perspective_warp": false // NEW: Set false for non-rectangular tables
|
| 852 |
+
}
|
| 853 |
+
"""
|
| 854 |
+
try:
|
| 855 |
+
rtmp_url = request.get("rtmp_url")
|
| 856 |
+
camera_name = request.get("camera_name")
|
| 857 |
+
corner_points = request.get("corner_points")
|
| 858 |
+
max_frames = request.get("max_frames", 250)
|
| 859 |
+
use_perspective_warp = request.get("use_perspective_warp", False) # NEW
|
| 860 |
+
|
| 861 |
+
# Validation
|
| 862 |
+
if not rtmp_url or not camera_name or not corner_points:
|
| 863 |
+
raise HTTPException(status_code=400, detail="Missing required parameters")
|
| 864 |
+
|
| 865 |
+
if len(corner_points) < 4:
|
| 866 |
+
raise HTTPException(status_code=400, detail="Minimum 4 corner points required")
|
| 867 |
+
|
| 868 |
+
logger.info(f"Starting GMM training for camera: {camera_name} with {len(corner_points)} points")
|
| 869 |
+
|
| 870 |
+
# ===== STEP 1: Connect to RTMP and capture frames =====
|
| 871 |
+
cap = cv2.VideoCapture(rtmp_url)
|
| 872 |
+
if not cap.isOpened():
|
| 873 |
+
raise HTTPException(status_code=400, detail=f"Failed to connect to RTMP: {rtmp_url}")
|
| 874 |
+
|
| 875 |
+
ret, first_frame = cap.read()
|
| 876 |
+
if not ret:
|
| 877 |
+
cap.release()
|
| 878 |
+
raise HTTPException(status_code=400, detail="Failed to read from RTMP stream")
|
| 879 |
+
|
| 880 |
+
h, w = first_frame.shape[:2]
|
| 881 |
+
|
| 882 |
+
# ===== STEP 2: Create polygon mask from N points =====
|
| 883 |
+
pts_polygon = np.array([
|
| 884 |
+
[point['x'], point['y']] for point in corner_points
|
| 885 |
+
], dtype=np.int32)
|
| 886 |
+
|
| 887 |
+
# Create binary mask for the table area
|
| 888 |
+
table_mask = np.zeros((h, w), dtype=np.uint8)
|
| 889 |
+
cv2.fillPoly(table_mask, [pts_polygon], 255)
|
| 890 |
+
|
| 891 |
+
# ===== STEP 3: Decide transformation strategy =====
|
| 892 |
+
import tempfile
|
| 893 |
+
temp_dir = tempfile.mkdtemp()
|
| 894 |
+
frame_count = 0
|
| 895 |
+
|
| 896 |
+
if use_perspective_warp and len(corner_points) == 4:
|
| 897 |
+
# ===== STRATEGY A: Perspective warp (rectangular tables only) =====
|
| 898 |
+
logger.info("Using perspective warp for rectangular table")
|
| 899 |
+
|
| 900 |
+
pts_src = np.array([
|
| 901 |
+
[corner_points[0]['x'], corner_points[0]['y']],
|
| 902 |
+
[corner_points[1]['x'], corner_points[1]['y']],
|
| 903 |
+
[corner_points[2]['x'], corner_points[2]['y']],
|
| 904 |
+
[corner_points[3]['x'], corner_points[3]['y']]
|
| 905 |
+
], dtype=np.float32)
|
| 906 |
+
|
| 907 |
+
pts_dst = np.array([
|
| 908 |
+
[0, 0], [w, 0], [w, h], [0, h]
|
| 909 |
+
], dtype=np.float32)
|
| 910 |
+
|
| 911 |
+
matrix = cv2.getPerspectiveTransform(pts_src, pts_dst)
|
| 912 |
+
|
| 913 |
+
# Capture and warp frames
|
| 914 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
| 915 |
+
while frame_count < max_frames:
|
| 916 |
+
ret, frame = cap.read()
|
| 917 |
+
if not ret:
|
| 918 |
+
break
|
| 919 |
+
|
| 920 |
+
warped = cv2.warpPerspective(frame, matrix, (w, h))
|
| 921 |
+
frame_path = os.path.join(temp_dir, f'b{frame_count:05d}.png')
|
| 922 |
+
cv2.imwrite(frame_path, warped)
|
| 923 |
+
frame_count += 1
|
| 924 |
+
|
| 925 |
+
if frame_count % 50 == 0:
|
| 926 |
+
logger.info(f"Captured {frame_count}/{max_frames} frames")
|
| 927 |
+
|
| 928 |
+
# For warped images, mask should be full frame (already aligned)
|
| 929 |
+
final_mask = np.ones((h, w), dtype=np.uint8) * 255
|
| 930 |
+
|
| 931 |
+
else:
|
| 932 |
+
# ===== STRATEGY B: Direct masking (curved/complex tables) =====
|
| 933 |
+
logger.info(f"Using direct masking for {len(corner_points)}-point polygon (curved table)")
|
| 934 |
+
|
| 935 |
+
# Capture frames WITHOUT warping, apply mask during inference
|
| 936 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
| 937 |
+
while frame_count < max_frames:
|
| 938 |
+
ret, frame = cap.read()
|
| 939 |
+
if not ret:
|
| 940 |
+
break
|
| 941 |
+
|
| 942 |
+
# Apply mask to frame (zero out outside table area)
|
| 943 |
+
masked_frame = cv2.bitwise_and(frame, frame, mask=table_mask)
|
| 944 |
+
|
| 945 |
+
frame_path = os.path.join(temp_dir, f'b{frame_count:05d}.png')
|
| 946 |
+
cv2.imwrite(frame_path, masked_frame)
|
| 947 |
+
frame_count += 1
|
| 948 |
+
|
| 949 |
+
if frame_count % 50 == 0:
|
| 950 |
+
logger.info(f"Captured {frame_count}/{max_frames} frames")
|
| 951 |
+
|
| 952 |
+
# Use original polygon mask
|
| 953 |
+
final_mask = table_mask
|
| 954 |
+
|
| 955 |
+
cap.release()
|
| 956 |
+
|
| 957 |
+
if frame_count == 0:
|
| 958 |
+
raise HTTPException(status_code=400, detail="No frames captured")
|
| 959 |
+
|
| 960 |
+
logger.info(f"Captured {frame_count} frames, starting GMM training...")
|
| 961 |
+
|
| 962 |
+
# ===== STEP 4: Train GMM =====
|
| 963 |
+
from GMM import GMM
|
| 964 |
+
gmm = GMM(temp_dir, frame_count, alpha=0.05)
|
| 965 |
+
gmm.train(K=4)
|
| 966 |
+
logger.info("GMM training complete")
|
| 967 |
+
|
| 968 |
+
# ===== STEP 5: Save artifacts =====
|
| 969 |
+
camera_path = os.path.join("models", camera_name)
|
| 970 |
+
os.makedirs(camera_path, exist_ok=True)
|
| 971 |
+
|
| 972 |
+
# 1. Save GMM model
|
| 973 |
+
gmm_path = os.path.join(camera_path, "gmm_model.joblib")
|
| 974 |
+
gmm.save_model(gmm_path)
|
| 975 |
+
|
| 976 |
+
# 2. Save mask (polygon-based, not rectangular)
|
| 977 |
+
mask_path = os.path.join(camera_path, "mask.png")
|
| 978 |
+
cv2.imwrite(mask_path, final_mask)
|
| 979 |
+
logger.info(f"Saved {len(corner_points)}-point polygon mask to {mask_path}")
|
| 980 |
+
|
| 981 |
+
# 3. Create thumbnail with polygon overlay
|
| 982 |
+
thumb_frame = first_frame.copy()
|
| 983 |
+
|
| 984 |
+
# Draw filled polygon with transparency
|
| 985 |
+
overlay = thumb_frame.copy()
|
| 986 |
+
cv2.fillPoly(overlay, [pts_polygon], (0, 255, 0))
|
| 987 |
+
cv2.addWeighted(thumb_frame, 0.7, overlay, 0.3, 0, thumb_frame)
|
| 988 |
+
|
| 989 |
+
# Draw polygon border
|
| 990 |
+
cv2.polylines(thumb_frame, [pts_polygon], True, (0, 255, 0), 3)
|
| 991 |
+
|
| 992 |
+
# Draw corner points with numbers
|
| 993 |
+
colors = [
|
| 994 |
+
(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
|
| 995 |
+
(255, 0, 255), (0, 255, 255), (128, 0, 128), (255, 128, 0)
|
| 996 |
+
]
|
| 997 |
+
|
| 998 |
+
for i, point in enumerate(corner_points):
|
| 999 |
+
x, y = point['x'], point['y']
|
| 1000 |
+
color = colors[i % len(colors)]
|
| 1001 |
+
|
| 1002 |
+
cv2.circle(thumb_frame, (x, y), 8, color, -1)
|
| 1003 |
+
cv2.circle(thumb_frame, (x, y), 10, (255, 255, 255), 2)
|
| 1004 |
+
|
| 1005 |
+
# Point number
|
| 1006 |
+
cv2.putText(thumb_frame, str(i+1), (x+15, y),
|
| 1007 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
|
| 1008 |
+
|
| 1009 |
+
# Camera name label
|
| 1010 |
+
cv2.putText(thumb_frame, camera_name, (30, 50),
|
| 1011 |
+
cv2.FONT_HERSHEY_DUPLEX, 1.5, (255, 255, 255), 3)
|
| 1012 |
+
cv2.putText(thumb_frame, camera_name, (30, 50),
|
| 1013 |
+
cv2.FONT_HERSHEY_DUPLEX, 1.5, (0, 255, 0), 2)
|
| 1014 |
+
|
| 1015 |
+
# Add point count indicator
|
| 1016 |
+
cv2.putText(thumb_frame, f"{len(corner_points)} points", (30, 90),
|
| 1017 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
|
| 1018 |
+
|
| 1019 |
+
thumb_path = os.path.join(camera_path, "thumb.png")
|
| 1020 |
+
cv2.imwrite(thumb_path, thumb_frame)
|
| 1021 |
+
|
| 1022 |
+
# 4. Save polygon metadata (NEW - for reconstruction)
|
| 1023 |
+
metadata = {
|
| 1024 |
+
"camera_name": camera_name,
|
| 1025 |
+
"num_points": len(corner_points),
|
| 1026 |
+
"corner_points": corner_points,
|
| 1027 |
+
"frame_dimensions": {"width": w, "height": h},
|
| 1028 |
+
"use_perspective_warp": use_perspective_warp,
|
| 1029 |
+
"training_date": datetime.now().isoformat()
|
| 1030 |
+
}
|
| 1031 |
+
|
| 1032 |
+
import json
|
| 1033 |
+
metadata_path = os.path.join(camera_path, "metadata.json")
|
| 1034 |
+
with open(metadata_path, 'w') as f:
|
| 1035 |
+
json.dump(metadata, f, indent=2)
|
| 1036 |
+
|
| 1037 |
+
logger.info(f"Saved metadata to {metadata_path}")
|
| 1038 |
+
|
| 1039 |
+
# Cleanup
|
| 1040 |
+
import shutil
|
| 1041 |
+
shutil.rmtree(temp_dir)
|
| 1042 |
+
|
| 1043 |
+
logger.info(f"✅ Camera '{camera_name}' training complete with {len(corner_points)}-point polygon!")
|
| 1044 |
+
|
| 1045 |
+
return {
|
| 1046 |
+
"success": True,
|
| 1047 |
+
"camera_name": camera_name,
|
| 1048 |
+
"camera_path": camera_path,
|
| 1049 |
+
"frames_captured": frame_count,
|
| 1050 |
+
"polygon_points": len(corner_points),
|
| 1051 |
+
"use_perspective_warp": use_perspective_warp,
|
| 1052 |
+
"model_files": {
|
| 1053 |
+
"gmm_model": gmm_path,
|
| 1054 |
+
"mask": mask_path,
|
| 1055 |
+
"thumbnail": thumb_path,
|
| 1056 |
+
"metadata": metadata_path
|
| 1057 |
+
}
|
| 1058 |
+
}
|
| 1059 |
+
|
| 1060 |
+
except Exception as e:
|
| 1061 |
+
logger.error(f"GMM training error: {e}")
|
| 1062 |
+
import traceback
|
| 1063 |
+
logger.error(traceback.format_exc())
|
| 1064 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 1065 |
+
|
| 1066 |
+
|
| 1067 |
+
@app.get("/cameras")
|
| 1068 |
+
async def list_cameras():
|
| 1069 |
+
"""
|
| 1070 |
+
List all trained cameras with their metadata.
|
| 1071 |
+
|
| 1072 |
+
Returns:
|
| 1073 |
+
{
|
| 1074 |
+
"cameras": [
|
| 1075 |
+
{
|
| 1076 |
+
"name": "kitchen",
|
| 1077 |
+
"path": "models/kitchen",
|
| 1078 |
+
"thumbnail": "models/kitchen/thumb.png",
|
| 1079 |
+
"has_gmm_model": true,
|
| 1080 |
+
"has_mask": true
|
| 1081 |
+
}
|
| 1082 |
+
]
|
| 1083 |
+
}
|
| 1084 |
+
"""
|
| 1085 |
+
try:
|
| 1086 |
+
cameras = []
|
| 1087 |
+
models_dir = "models"
|
| 1088 |
+
|
| 1089 |
+
if not os.path.exists(models_dir):
|
| 1090 |
+
return {"cameras": []}
|
| 1091 |
+
|
| 1092 |
+
for camera_name in os.listdir(models_dir):
|
| 1093 |
+
camera_path = os.path.join(models_dir, camera_name)
|
| 1094 |
+
|
| 1095 |
+
if not os.path.isdir(camera_path):
|
| 1096 |
+
continue
|
| 1097 |
+
|
| 1098 |
+
gmm_path = os.path.join(camera_path, "gmm_model.joblib")
|
| 1099 |
+
mask_path = os.path.join(camera_path, "mask.png")
|
| 1100 |
+
thumb_path = os.path.join(camera_path, "thumb.png")
|
| 1101 |
+
|
| 1102 |
+
cameras.append({
|
| 1103 |
+
"name": camera_name,
|
| 1104 |
+
"path": camera_path,
|
| 1105 |
+
"thumbnail": thumb_path if os.path.exists(thumb_path) else None,
|
| 1106 |
+
"has_gmm_model": os.path.exists(gmm_path),
|
| 1107 |
+
"has_mask": os.path.exists(mask_path)
|
| 1108 |
+
})
|
| 1109 |
+
|
| 1110 |
+
return {"cameras": cameras}
|
| 1111 |
+
|
| 1112 |
+
except Exception as e:
|
| 1113 |
+
logger.error(f"List cameras error: {e}")
|
| 1114 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
@app.delete("/camera/{camera_name}")
|
| 1118 |
+
async def delete_camera(camera_name: str):
|
| 1119 |
+
"""
|
| 1120 |
+
Delete a trained camera and all its files.
|
| 1121 |
+
"""
|
| 1122 |
+
try:
|
| 1123 |
+
camera_path = os.path.join("models", camera_name)
|
| 1124 |
+
|
| 1125 |
+
if not os.path.exists(camera_path):
|
| 1126 |
+
raise HTTPException(status_code=404, detail=f"Camera '{camera_name}' not found")
|
| 1127 |
+
|
| 1128 |
+
import shutil
|
| 1129 |
+
shutil.rmtree(camera_path)
|
| 1130 |
+
|
| 1131 |
+
logger.info(f"Deleted camera: {camera_name}")
|
| 1132 |
+
|
| 1133 |
+
return {
|
| 1134 |
+
"success": True,
|
| 1135 |
+
"message": f"Camera '{camera_name}' deleted successfully"
|
| 1136 |
+
}
|
| 1137 |
+
|
| 1138 |
+
except Exception as e:
|
| 1139 |
+
logger.error(f"Delete camera error: {e}")
|
| 1140 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 1141 |
+
|
| 1142 |
+
|
| 1143 |
+
@app.get("/health")
|
| 1144 |
+
async def health_check():
|
| 1145 |
+
"""Health check endpoint."""
|
| 1146 |
+
with streams_lock:
|
| 1147 |
+
stream_count = len(active_streams)
|
| 1148 |
+
|
| 1149 |
+
return {
|
| 1150 |
+
"status": "healthy",
|
| 1151 |
+
"active_streams": stream_count,
|
| 1152 |
+
"timestamp": datetime.now().isoformat()
|
| 1153 |
+
}
|
| 1154 |
+
|
| 1155 |
+
|
| 1156 |
+
if __name__ == "__main__":
|
| 1157 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|