saim1309's picture
Update app.py
69b6522 verified
import gradio as gr
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force CPU if needed
import torch
import numpy as np
from PIL import Image
from PIL import Image as PILImage
from pathlib import Path
import matplotlib.pyplot as plt
import io
from skimage.io import imread
from skimage.color import rgb2gray
from csbdeep.utils import normalize
from stardist.models import StarDist2D
from stardist.plot import render_label
from MEDIARFormer import MEDIARFormer
from Predictor import Predictor
from cellpose import models as cellpose_models, io as cellpose_io, plot as cellpose_plot
# Load SegFormer
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
processor_segformer = SegformerImageProcessor(do_reduce_labels=False)
model_segformer = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b0-finetuned-ade-512-512",
num_labels=8,
ignore_mismatched_sizes=True
)
model_segformer.load_state_dict(torch.load("trained_model_200.pt", map_location="cpu"))
model_segformer.eval()
# StarDist model
model_stardist = StarDist2D.from_pretrained('2D_versatile_fluo')
# Cellpose model
model_cellpose = cellpose_models.CellposeModel(gpu=False)
# Handle SegFormer prediction
def infer_segformer(image):
image = image.convert("RGB")
inputs = processor_segformer(images=image, return_tensors="pt")
with torch.no_grad():
logits = model_segformer(**inputs).logits
pred_mask = torch.argmax(logits, dim=1)[0].cpu().numpy()
# Colorize
colors = np.array([[0,0,0], [255,0,0], [0,255,0], [0,0,255], [255,255,0], [255,0,255], [0,255,255], [128,128,128]])
color_mask = np.zeros((pred_mask.shape[0], pred_mask.shape[1], 3), dtype=np.uint8)
for c in range(8):
color_mask[pred_mask == c] = colors[c]
return image, Image.fromarray(color_mask)
# Handle StarDist prediction
def infer_stardist(image):
image_gray = rgb2gray(np.array(image)) if image.mode == 'RGB' else np.array(image)
labels, _ = model_stardist.predict_instances(normalize(image_gray))
overlay = render_label(labels, img=image_gray)
overlay = (overlay[..., :3] * 255).astype(np.uint8)
return image, Image.fromarray(overlay)
# Handle MEDIAR prediction
def infer_mediar(image, temp_dir="temp_mediar"):
os.makedirs(temp_dir, exist_ok=True)
input_path = os.path.join(temp_dir, "input_image.tiff")
output_path = os.path.join(temp_dir, "input_image_label.tiff")
image.save(input_path)
model_args = {
"classes": 3,
"decoder_channels": [1024, 512, 256, 128, 64],
"decoder_pab_channels": 256,
"encoder_name": 'mit_b5',
"in_channels": 3
}
model = MEDIARFormer(**model_args)
weights = torch.load("from_phase1.pth", map_location="cpu")
model.load_state_dict(weights, strict=False)
model.eval()
predictor = Predictor(model, "cpu", temp_dir, temp_dir, algo_params={"use_tta": False})
predictor.img_names = ["input_image.tiff"]
_ = predictor.conduct_prediction()
pred = imread(output_path)
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(pred, cmap="cividis")
ax.axis("off")
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return image, Image.open(buf)
# Handle Cellpose prediction
def infer_cellpose(image, temp_dir="temp_cellpose"):
os.makedirs(temp_dir, exist_ok=True)
input_path = os.path.join(temp_dir, "input_image.tif")
output_overlay = os.path.join(temp_dir, "overlay.png")
# Save image
image.save(input_path)
img = cellpose_io.imread(input_path)
masks, flows, styles = model_cellpose.eval(img, batch_size=1)
fig = plt.figure(figsize=(12,5))
cellpose_plot.show_segmentation(fig, img, masks, flows[0])
plt.tight_layout()
fig.savefig(output_overlay)
plt.close(fig)
return image, Image.open(output_overlay)
# Wrapper function
def segment(model_name, image):
# Gradio passes a PIL.Image without filename attribute
# Try to check format if available, else skip check
ext = None
if hasattr(image, 'format') and image.format is not None:
ext = image.format.lower()
if model_name == "Cellpose":
# Accept only TIFF images for Cellpose
if ext not in ["tiff", "tif", None]:
return None, f"❌ Cellpose only supports `.tif` or `.tiff` images."
# ...existing code...
if model_name == "SegFormer":
return infer_segformer(image)
elif model_name == "StarDist":
return infer_stardist(image)
elif model_name == "MEDIAR":
return infer_mediar(image)
elif model_name == "Cellpose":
return infer_cellpose(image)
else:
return None, f"❌ Unknown model: {model_name}"
with gr.Blocks(title="Cell Segmentation Explorer") as app:
gr.Markdown("## Cell Segmentation Explorer")
gr.Markdown("Choose a segmentation model, upload an appropriate image, and view the predicted mask.")
with gr.Row():
with gr.Column():
model_dropdown = gr.Dropdown(
choices=["SegFormer", "StarDist", "MEDIAR", "Cellpose"],
label="Select Segmentation Model",
value="SegFormer"
)
image_input = gr.Image(type="pil", label="Uploaded Image")
description_box = gr.Markdown("Accepted formats: `.png`, `.jpg`, `.tif`, `.tiff`.")
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
with gr.Column():
output_image = gr.Image(label="Segmentation Result")
def handle_submit(model_name, img):
if img is None:
return None
_, result = segment(model_name, img) # Only return the mask (segmentation result)
return result
submit_btn.click(
fn=handle_submit,
inputs=[model_dropdown, image_input],
outputs=output_image
)
clear_btn.click(
lambda: [None, None],
inputs=None,
outputs=[image_input, output_image]
)
# === SAMPLE IMAGES SECTION ===
gr.Markdown("---")
gr.Markdown("### Sample Images (click to use as input)")
# Original and resized thumbnails
original_sample_paths = [
"img1.png",
"img2.png",
"img3.png"
]
resized_sample_paths = []
for idx, p in enumerate(original_sample_paths):
img = PILImage.open(p).resize((128, 128))
temp_path = f"/tmp/sample_resized_{idx}.png"
img.save(temp_path)
resized_sample_paths.append(temp_path)
sample_image_components = []
with gr.Row():
for i, img_path in enumerate(resized_sample_paths):
def load_full_image(idx=i): # Capture loop index properly
return PILImage.open(original_sample_paths[idx])
sample_img = gr.Image(value=img_path, type="pil", interactive=True, show_label=False)
sample_img.select(
fn=load_full_image,
inputs=[],
outputs=image_input
)
sample_image_components.append(sample_img)
app.launch()