Spaces:
Sleeping
Sleeping
muhammadhamza-stack
commited on
Commit
·
f23f0f3
1
Parent(s):
3351b09
refine the gradio app
Browse files- app.py +168 -38
- blood_smear_1.jpg +3 -0
- blood_smear_2.jpg +3 -0
app.py
CHANGED
|
@@ -2,65 +2,195 @@ from typing import Tuple
|
|
| 2 |
from ultralytics import YOLO
|
| 3 |
from ultralytics.engine.results import Boxes
|
| 4 |
from ultralytics.utils.plotting import Annotator
|
| 5 |
-
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
models = {"Yolo V11": yolo_detector, "Real Time Detection Transformer": redetr_detector}
|
| 13 |
-
# classes = {"Yolo V11": [0], "Real Time Detection Transformer": [1]}
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def inference(image, model, conf) -> Tuple[str, str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
bboxes = []
|
| 18 |
labels = []
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
cells_results = cell_detector.predict(image, conf=0.4)
|
| 22 |
-
selected_model_results = models[model].predict(
|
| 23 |
-
image, conf=conf
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
for cell_result in cells_results:
|
| 27 |
boxes: Boxes = cell_result.boxes
|
| 28 |
healthy_cells_bboxes = boxes.xyxy.tolist()
|
| 29 |
-
|
| 30 |
bboxes.extend(healthy_cells_bboxes)
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
for res in selected_model_results:
|
| 34 |
boxes: Boxes = res.boxes
|
| 35 |
unhealthy_cells_bboxes = boxes.xyxy.tolist()
|
| 36 |
-
|
| 37 |
bboxes.extend(unhealthy_cells_bboxes)
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
for box, label in zip(bboxes, labels):
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
img = annotator.result()
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
gr.
|
| 60 |
-
gr.
|
| 61 |
-
gr.
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from ultralytics import YOLO
|
| 3 |
from ultralytics.engine.results import Boxes
|
| 4 |
from ultralytics.utils.plotting import Annotator
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
+
# --- Model Loading ---
|
| 9 |
+
try:
|
| 10 |
+
cell_detector = YOLO("./weights/yolo_uninfected_cells.pt")
|
| 11 |
+
yolo_detector = YOLO("./weights/yolo_infected_cells.pt")
|
| 12 |
+
redetr_detector = YOLO("./weights/redetr_infected_cells.pt")
|
| 13 |
+
except Exception as e:
|
| 14 |
+
print(f"Warning: Model loading failed. Ensure weights files are in ./weights/ directory. Error: {e}")
|
| 15 |
+
# Define placeholder models if real models fail to load (for UI development)
|
| 16 |
+
class DummyYOLO:
|
| 17 |
+
def predict(self, image, conf=0.5):
|
| 18 |
+
# Return dummy results structure
|
| 19 |
+
class DummyBoxes:
|
| 20 |
+
xyxy = []
|
| 21 |
+
class DummyResult:
|
| 22 |
+
boxes = DummyBoxes()
|
| 23 |
+
return [DummyResult()]
|
| 24 |
+
cell_detector = DummyYOLO()
|
| 25 |
+
yolo_detector = DummyYOLO()
|
| 26 |
+
redetr_detector = DummyYOLO()
|
| 27 |
|
| 28 |
models = {"Yolo V11": yolo_detector, "Real Time Detection Transformer": redetr_detector}
|
|
|
|
| 29 |
|
| 30 |
+
# --- Documentation Strings ---
|
| 31 |
+
|
| 32 |
+
USAGE_GUIDELINES = """
|
| 33 |
+
## 1. Quick Start Guide: Cell Detection and Counting
|
| 34 |
+
This application uses two specialized Artificial Intelligence models to analyze a blood smear image, simultaneously detecting both healthy and potentially infected (unhealthy) cells.
|
| 35 |
+
|
| 36 |
+
1. **Upload**: Upload a clear blood smear image (JPG or PNG) using the 'Input Image' box.
|
| 37 |
+
2. **Select Model**: Choose between the two detection models: `Yolo V11` (often fast and accurate for common objects) or `Real Time Detection Transformer`.
|
| 38 |
+
3. **Adjust Confidence**: Use the slider to set the **Confidence Threshold**. (A higher value means the model must be more certain of a detection.)
|
| 39 |
+
4. **Run**: Click the **"Submit"** button.
|
| 40 |
+
5. **Review**: The output image will show bounding boxes around detected cells (colors based on model configuration), and the counts will be displayed below.
|
| 41 |
+
|
| 42 |
+
### Key Requirement:
|
| 43 |
+
* The system uses **two independent models**: one strictly for **Healthy Cells**, and one (the selected model) for **Infected Cells**.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
INPUT_EXPLANATION = """
|
| 47 |
+
## 2. Expected Inputs
|
| 48 |
+
|
| 49 |
+
| Parameter | Purpose | Range/Options | Guidance for Non-Tech Users |
|
| 50 |
+
| :--- | :--- | :--- | :--- |
|
| 51 |
+
| **Input Image** | The microscopic blood smear image to be analyzed. | JPG, PNG format. | Ensure the image is clear and focused. |
|
| 52 |
+
| **Model Selection** | Chooses the AI architecture used for detecting **Infected Cells**. | Yolo V11, Real Time Detection Transformer | Start with the default (`Yolo V11`) unless specific performance is required. |
|
| 53 |
+
| **Confidence Threshold** | The minimum probability required for a detection box to be shown. | 0.01 to 1.00 | Setting this too low (e.g., 0.1) may show many false positives. Setting it too high (e.g., 0.9) may miss real cells. Start around 0.5. |
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
OUTPUT_EXPLANATION = """
|
| 57 |
+
## 3. Expected Outputs
|
| 58 |
+
|
| 59 |
+
| Output Field | Description | Interpretation |
|
| 60 |
+
| :--- | :--- | :--- |
|
| 61 |
+
| **Output Image** | The input image with colored bounding boxes drawn around every detected cell. | Visually confirms the location and classification of each cell. |
|
| 62 |
+
| **Healthy Cells Count** | The total number of cells detected by the dedicated *uninfected* cell model. | Provides a baseline count of normal cells. |
|
| 63 |
+
| **Infected Cells Count** | The total number of cells detected by the *selected* model (Yolo V11 or RT DETR). | This represents the count of potentially cancerous/abnormal cells. |
|
| 64 |
+
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
# --- Example Data Setup ---
|
| 68 |
+
# Assuming you have example images named 'blood_smear_1.jpg' and 'blood_smear_2.jpg'
|
| 69 |
+
# in an 'examples' folder or the root directory.
|
| 70 |
+
SAMPLE_EXAMPLES = [
|
| 71 |
+
["blood_smear_1.jpg", "Yolo V11", 0.5],
|
| 72 |
+
["blood_smear_2.jpg", "Real Time Detection Transformer", 0.45],
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
# ----------------- Core Inference Function -----------------
|
| 76 |
|
| 77 |
def inference(image, model, conf) -> Tuple[str, str, str]:
|
| 78 |
+
# Ensure all inputs are valid before proceeding
|
| 79 |
+
if image is None:
|
| 80 |
+
gr.Error("Please upload an image.")
|
| 81 |
+
return None, "0", "0"
|
| 82 |
+
if model not in models:
|
| 83 |
+
gr.Error(f"Selected model '{model}' is not available.")
|
| 84 |
+
return None, "0", "0"
|
| 85 |
+
|
| 86 |
bboxes = []
|
| 87 |
labels = []
|
| 88 |
+
|
| 89 |
+
# Use lists to store counts that will be incremented
|
| 90 |
+
healthy_cell_count_list = [0]
|
| 91 |
+
unhealthy_cell_count_list = [0]
|
| 92 |
+
|
| 93 |
+
# 1. Healthy Cell Detection (Fixed model and fixed confidence 0.4)
|
| 94 |
cells_results = cell_detector.predict(image, conf=0.4)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
for cell_result in cells_results:
|
| 96 |
boxes: Boxes = cell_result.boxes
|
| 97 |
healthy_cells_bboxes = boxes.xyxy.tolist()
|
| 98 |
+
healthy_cell_count_list[0] += len(healthy_cells_bboxes)
|
| 99 |
bboxes.extend(healthy_cells_bboxes)
|
| 100 |
+
# Note: YOLO classes start at 0. Here we use custom labels 'healthy'
|
| 101 |
+
labels.extend(["healthy"] * len(healthy_cells_bboxes))
|
| 102 |
+
|
| 103 |
+
# 2. Infected Cell Detection (Selected model and user-defined confidence)
|
| 104 |
+
selected_model_results = models[model].predict(image, conf=conf)
|
| 105 |
|
| 106 |
for res in selected_model_results:
|
| 107 |
boxes: Boxes = res.boxes
|
| 108 |
unhealthy_cells_bboxes = boxes.xyxy.tolist()
|
| 109 |
+
unhealthy_cell_count_list[0] += len(unhealthy_cells_bboxes)
|
| 110 |
bboxes.extend(unhealthy_cells_bboxes)
|
| 111 |
+
# Note: Use 'unhealthy' label for the selected model's output
|
| 112 |
+
labels.extend(["unhealthy"] * len(unhealthy_cells_bboxes))
|
| 113 |
+
|
| 114 |
+
# 3. Annotation
|
| 115 |
+
annotator = Annotator(image, font_size=30, line_width=4, pil=True) # Increased font/width for visibility
|
| 116 |
|
| 117 |
+
# Define colors based on label
|
| 118 |
+
color_map = {"healthy": (0, 255, 0), "unhealthy": (255, 0, 0)} # Green for healthy, Red for unhealthy
|
| 119 |
|
| 120 |
for box, label in zip(bboxes, labels):
|
| 121 |
+
# Annotator expects a list of 4 float coords and an optional label string
|
| 122 |
+
annotator.box_label(box, label, color=color_map.get(label, (255, 255, 255)))
|
| 123 |
|
| 124 |
img = annotator.result()
|
| 125 |
+
|
| 126 |
+
# Return results as strings for the Textbox components
|
| 127 |
+
return (img, str(healthy_cell_count_list[0]), str(unhealthy_cell_count_list[0]))
|
| 128 |
+
|
| 129 |
+
# ----------------- Gradio Interface (Blocks) -----------------
|
| 130 |
+
|
| 131 |
+
with gr.Blocks(title="Blood Cell Detection") as ifer:
|
| 132 |
+
gr.Markdown("<h1 style='text-align: center;'> Blood Cell Cancer Detection and Counting </h1>")
|
| 133 |
+
gr.Markdown("Uses specialized object detection models to count healthy and infected cells in blood smear images.")
|
| 134 |
+
|
| 135 |
+
# 1. Documentation
|
| 136 |
+
with gr.Accordion(" Tips & Guidelines ", open=False):
|
| 137 |
+
gr.Markdown(USAGE_GUIDELINES)
|
| 138 |
+
gr.Markdown("---")
|
| 139 |
+
gr.Markdown(INPUT_EXPLANATION)
|
| 140 |
+
gr.Markdown("---")
|
| 141 |
+
gr.Markdown(OUTPUT_EXPLANATION)
|
| 142 |
+
|
| 143 |
+
# 2. Interface Inputs
|
| 144 |
+
with gr.Row():
|
| 145 |
+
with gr.Column():
|
| 146 |
+
gr.Markdown("## Step 1: Upload Image ")
|
| 147 |
+
image_input = gr.Image(label="Input Image", type="numpy")
|
| 148 |
+
with gr.Column():
|
| 149 |
+
gr.Markdown("## Step 2: Set Parameters")
|
| 150 |
+
model_selection = gr.Dropdown(
|
| 151 |
+
label="Select Detection Model (for Infected Cells)",
|
| 152 |
+
choices=["Yolo V11", "Real Time Detection Transformer"],
|
| 153 |
+
multiselect=False,
|
| 154 |
+
value="Yolo V11"
|
| 155 |
+
)
|
| 156 |
+
conf_slider = gr.Slider(
|
| 157 |
+
minimum=0.01,
|
| 158 |
+
maximum=1,
|
| 159 |
+
value=0.5,
|
| 160 |
+
step=0.01,
|
| 161 |
+
label="Confidence Threshold (Min. certainty required)"
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
gr.Markdown("## Step 3: Click Analyze Image")
|
| 165 |
+
with gr.Row():
|
| 166 |
+
submit_button = gr.Button("Analyze Image", variant="primary")
|
| 167 |
+
|
| 168 |
+
# 3. Interface Outputs
|
| 169 |
+
gr.Markdown("## Results")
|
| 170 |
+
output_image = gr.Image(label="Output Image (Detected Cells)", type="numpy")
|
| 171 |
+
|
| 172 |
+
with gr.Row():
|
| 173 |
+
healthy_count = gr.Textbox(label="Healthy Cells Count")
|
| 174 |
+
unhealthy_count = gr.Textbox(label="Infected Cells Count")
|
| 175 |
+
|
| 176 |
+
# 4. Examples
|
| 177 |
+
gr.Markdown("---")
|
| 178 |
+
gr.Markdown("## Example Inputs")
|
| 179 |
+
gr.Examples(
|
| 180 |
+
examples=SAMPLE_EXAMPLES,
|
| 181 |
+
inputs=[image_input, model_selection, conf_slider],
|
| 182 |
+
outputs=[output_image, healthy_count, unhealthy_count],
|
| 183 |
+
fn=inference,
|
| 184 |
+
cache_examples=False,
|
| 185 |
+
label="Click a row to load the image and parameters"
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# Event Handler
|
| 189 |
+
submit_button.click(
|
| 190 |
+
fn=inference,
|
| 191 |
+
inputs=[image_input, model_selection, conf_slider],
|
| 192 |
+
outputs=[output_image, healthy_count, unhealthy_count]
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
if __name__ == "__main__":
|
| 196 |
+
ifer.launch(share=True)
|
blood_smear_1.jpg
ADDED
|
Git LFS Details
|
blood_smear_2.jpg
ADDED
|
Git LFS Details
|