Spaces:
Runtime error
Runtime error
// Defined when llama.cpp is compiled with support for offloading model layers | |
// to GPU. | |
extern "C" { | |
// | |
// C interface | |
// | |
// TODO: show sample usage | |
// | |
struct falcon_context; | |
struct falcon_context_params { | |
int n_ctx; // text context | |
int n_batch; // prompt processing batch size | |
int n_gpu_layers; // number of layers to store in VRAM | |
int i_gpu_start; // first gpu layer | |
int i_gpu_last; // last gpu layer | |
int main_gpu; // the GPU that is used for scratch and small tensors | |
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple | |
// GPUs | |
int seed; // RNG seed, -1 for random | |
bool f16_kv; // use fp16 for KV cache | |
bool logits_all; // the llama_eval() call computes all logits, not just the | |
// last one | |
bool vocab_only; // only load the vocabulary, no weights | |
bool use_mmap; // use mmap if possible | |
bool use_mlock; // force system to keep model in RAM | |
bool embedding; // embedding mode only | |
// called with a progress value between 0 and 1, pass NULL to disable | |
llama_progress_callback progress_callback; | |
// context pointer passed to the progress callback | |
void *progress_callback_user_data; | |
}; | |
// model quantization parameters | |
typedef struct falcon_model_quantize_params { | |
int nthread; // number of threads to use for quantizing, if <=0 will use | |
// std::thread::hardware_concurrency() | |
enum llama_ftype ftype; // quantize to this llama_ftype | |
bool allow_requantize; // allow quantizing non-f32/f16 tensors | |
bool quantize_output_tensor; // quantize output.weight | |
} falcon_model_quantize_params; | |
LLAMA_API struct falcon_context_params falcon_context_default_params(); | |
LLAMA_API struct falcon_model_quantize_params | |
falcon_model_quantize_default_params(); | |
// Various functions for loading a ggml llama model. | |
// Allocate (almost) all memory needed for the model. | |
// Return NULL on failure | |
LLAMA_API struct falcon_context *falcon_init_from_file( | |
const char *path_model, struct falcon_context_params params); | |
// Frees all allocated memory | |
LLAMA_API void falcon_free(struct falcon_context *ctx); | |
// Returns 0 on success | |
LLAMA_API int falcon_model_quantize(const char *fname_inp, | |
const char *fname_out, | |
const falcon_model_quantize_params *params); | |
// Apply a LoRA adapter to a loaded model | |
// path_base_model is the path to a higher quality model to use as a base for | |
// the layers modified by the adapter. Can be NULL to use the current loaded | |
// model. The model needs to be reloaded before applying a new adapter, | |
// otherwise the adapter will be applied on top of the previous one Returns 0 on | |
// success | |
LLAMA_API int falcon_apply_lora_from_file(struct falcon_context *ctx, | |
const char *path_lora, | |
const char *path_base_model, | |
int n_threads); | |
// Returns the number of tokens in the KV cache | |
LLAMA_API int falcon_get_kv_cache_token_count(const struct falcon_context *ctx); | |
// Sets the current rng seed. | |
LLAMA_API void falcon_set_rng_seed(struct falcon_context *ctx, int seed); | |
// Returns the maximum size in bytes of the state (rng, logits, embedding | |
// and kv_cache) - will often be smaller after compacting tokens | |
LLAMA_API size_t falcon_get_state_size(const struct falcon_context *ctx); | |
// Copies the state to the specified destination address. | |
// Destination needs to have allocated enough memory. | |
// Returns the number of bytes copied | |
LLAMA_API size_t falcon_copy_state_data(struct falcon_context *ctx, | |
uint8_t *dst); | |
// Set the state reading from the specified address | |
// Returns the number of bytes read | |
LLAMA_API size_t falcon_set_state_data(struct falcon_context *ctx, | |
uint8_t *src); | |
// Save/load session file | |
LLAMA_API bool falcon_load_session_file(struct falcon_context *ctx, | |
const char *path_session, | |
llama_token *tokens_out, | |
size_t n_token_capacity, | |
size_t *n_token_count_out); | |
LLAMA_API bool falcon_save_session_file(struct falcon_context *ctx, | |
const char *path_session, | |
const llama_token *tokens, | |
size_t n_token_count); | |
// Run the llama inference to obtain the logits and probabilities for the next | |
// token. tokens + n_tokens is the provided batch of new tokens to process | |
// n_past is the number of tokens to use from previous eval calls | |
// Returns 0 on success | |
LLAMA_API int falcon_eval(struct falcon_context *ctx, const llama_token *tokens, | |
int n_tokens, int n_past, int n_threads, | |
int debug_timings); | |
// Export a static computation graph for context of 511 and batch size of 1 | |
// NOTE: since this functionality is mostly for debugging and demonstration | |
// purposes, we hardcode these | |
// parameters here to keep things simple | |
// IMPORTANT: do not use for anything else other than debugging and testing! | |
LLAMA_API int falcon_eval_export(struct falcon_context *ctx, const char *fname); | |
// Convert the provided text into tokens. | |
// The tokens pointer must be large enough to hold the resulting tokens. | |
// Returns the number of tokens on success, no more than n_max_tokens | |
// Returns a negative number on failure - the number of tokens that would have | |
// been returned | |
// TODO: not sure if correct | |
LLAMA_API int falcon_tokenize(struct falcon_context *ctx, const char *text, | |
llama_token *tokens, int n_max_tokens, | |
bool add_bos); | |
LLAMA_API int falcon_n_vocab(const struct falcon_context *ctx); | |
LLAMA_API int falcon_n_ctx(const struct falcon_context *ctx); | |
LLAMA_API int falcon_n_embd(const struct falcon_context *ctx); | |
// Get the vocabulary as output parameters. | |
// Returns number of results. | |
LLAMA_API int falcon_get_vocab(const struct falcon_context *ctx, | |
const char **strings, float *scores, | |
int capacity); | |
// Token logits obtained from the last call to llama_eval() | |
// The logits for the last token are stored in the last row | |
// Can be mutated in order to change the probabilities of the next token | |
// Rows: n_tokens | |
// Cols: n_vocab | |
LLAMA_API float *falcon_get_logits(struct falcon_context *ctx); | |
// Get the embeddings for the input | |
// shape: [n_embd] (1-dimensional) | |
LLAMA_API float *falcon_get_embeddings(struct falcon_context *ctx); | |
// Token Id -> String. Uses the vocabulary in the provided context | |
LLAMA_API const char *falcon_token_to_str(const struct falcon_context *ctx, | |
llama_token token); | |
// Special tokens | |
LLAMA_API llama_token falcon_token_bos(); | |
LLAMA_API llama_token falcon_token_eos(); | |
LLAMA_API llama_token falcon_token_nl(); | |
// Sampling functions | |
/// @details Repetition penalty described in CTRL academic paper | |
/// https://arxiv.org/abs/1909.05858, with negative logit fix. | |
LLAMA_API void falcon_sample_repetition_penalty( | |
struct falcon_context *ctx, llama_token_data_array *candidates, | |
const llama_token *last_tokens, size_t last_tokens_size, float penalty); | |
/// @details Frequency and presence penalties described in OpenAI API | |
/// https://platform.openai.com/docs/api-reference/parameter-details. | |
LLAMA_API void falcon_sample_frequency_and_presence_penalties( | |
struct falcon_context *ctx, llama_token_data_array *candidates, | |
const llama_token *last_tokens, size_t last_tokens_size, | |
float alpha_frequency, float alpha_presence); | |
/// @details Sorts candidate tokens by their logits in descending order and | |
/// calculate probabilities based on logits. | |
LLAMA_API void falcon_sample_softmax(struct falcon_context *ctx, | |
llama_token_data_array *candidates); | |
/// @details Top-K sampling described in academic paper "The Curious Case of | |
/// Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
LLAMA_API void falcon_sample_top_k(struct falcon_context *ctx, | |
llama_token_data_array *candidates, int k, | |
size_t min_keep); | |
/// @details Nucleus sampling described in academic paper "The Curious Case of | |
/// Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
LLAMA_API void falcon_sample_top_p(struct falcon_context *ctx, | |
llama_token_data_array *candidates, float p, | |
size_t min_keep); | |
/// @details Tail Free Sampling described in | |
/// https://www.trentonbricken.com/Tail-Free-Sampling/. | |
LLAMA_API void falcon_sample_tail_free(struct falcon_context *ctx, | |
llama_token_data_array *candidates, | |
float z, size_t min_keep); | |
/// @details Locally Typical Sampling implementation described in the paper | |
/// https://arxiv.org/abs/2202.00666. | |
LLAMA_API void falcon_sample_typical(struct falcon_context *ctx, | |
llama_token_data_array *candidates, | |
float p, size_t min_keep); | |
LLAMA_API void falcon_sample_temperature(struct falcon_context *ctx, | |
llama_token_data_array *candidates, | |
float temp); | |
/// @details Mirostat 1.0 algorithm described in the paper | |
/// https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
/// @param candidates A vector of `llama_token_data` containing the candidate | |
/// tokens, their probabilities (p), and log-odds (logit) for the current | |
/// position in the generated text. | |
/// @param tau The target cross-entropy (or surprise) value you want to achieve | |
/// for the generated text. A higher value corresponds to more surprising or | |
/// less predictable text, while a lower value corresponds to less surprising or | |
/// more predictable text. | |
/// @param eta The learning rate used to update `mu` based on the error between | |
/// the target and observed surprisal of the sampled word. A larger learning | |
/// rate will cause `mu` to be updated more quickly, while a smaller learning | |
/// rate will result in slower updates. | |
/// @param m The number of tokens considered in the estimation of `s_hat`. This | |
/// is an arbitrary value that is used to calculate `s_hat`, which in turn helps | |
/// to calculate the value of `k`. In the paper, they use `m = 100`, but you can | |
/// experiment with different values to see how it affects the performance of | |
/// the algorithm. | |
/// @param mu Maximum cross-entropy. This value is initialized to be twice the | |
/// target cross-entropy (`2 * tau`) and is updated in the algorithm based on | |
/// the error between the target and observed surprisal. | |
LLAMA_API llama_token falcon_sample_token_mirostat( | |
struct falcon_context *ctx, llama_token_data_array *candidates, float tau, | |
float eta, int m, float *mu); | |
/// @details Mirostat 2.0 algorithm described in the paper | |
/// https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
/// @param candidates A vector of `llama_token_data` containing the candidate | |
/// tokens, their probabilities (p), and log-odds (logit) for the current | |
/// position in the generated text. | |
/// @param tau The target cross-entropy (or surprise) value you want to achieve | |
/// for the generated text. A higher value corresponds to more surprising or | |
/// less predictable text, while a lower value corresponds to less surprising or | |
/// more predictable text. | |
/// @param eta The learning rate used to update `mu` based on the error between | |
/// the target and observed surprisal of the sampled word. A larger learning | |
/// rate will cause `mu` to be updated more quickly, while a smaller learning | |
/// rate will result in slower updates. | |
/// @param mu Maximum cross-entropy. This value is initialized to be twice the | |
/// target cross-entropy (`2 * tau`) and is updated in the algorithm based on | |
/// the error between the target and observed surprisal. | |
LLAMA_API llama_token falcon_sample_token_mirostat_v2( | |
struct falcon_context *ctx, llama_token_data_array *candidates, float tau, | |
float eta, float *mu); | |
/// @details Selects the token with the highest probability. | |
LLAMA_API llama_token falcon_sample_token_greedy( | |
struct falcon_context *ctx, llama_token_data_array *candidates); | |
/// @details Randomly selects a token from the candidates based on their | |
/// probabilities. | |
LLAMA_API llama_token falcon_sample_token(struct falcon_context *ctx, | |
llama_token_data_array *candidates); | |
// Performance information | |
LLAMA_API void falcon_print_timings(struct falcon_context *ctx); | |
LLAMA_API void falcon_reset_timings(struct falcon_context *ctx); | |
// Print system information | |
LLAMA_API const char *falcon_print_system_info(void); | |
} | |
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only | |
struct ggml_tensor; | |
std::vector<std::pair<std::string, struct ggml_tensor *>> | |
&llama_internal_get_tensor_map(struct falcon_context *ctx); | |