ML610's picture
Upload 515 files
1cf2abd
raw
history blame
107 kB
// Defines fileno on msys:
// inference&model based on the ggml falcon example PR from
// https://github.com/KerfuffleV2/ggml-falcon
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <cstddef>
#include <cstdint>
#include <cstdio>
#endif
#include "ggml.h"
#include "libfalcon.h"
#include "llama-util.h"
#ifdef GGML_USE_CUBLAS
#include <cuda_runtime.h>
#include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifndef QK_K
#define QK_K 256
#endif
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <cinttypes>
#include <climits>
#include <cstring>
#include <ctime>
#include <fstream>
#include <initializer_list>
#include <map>
#include <memory>
#include <mutex>
#include <numeric>
#include <queue>
#include <random>
#include <sstream>
#include <thread>
#include <unordered_map>
#if defined(_MSC_VER)
// disable "possible loss of data"
#pragma warning(disable : 4244 4267)
#endif
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
// available falcon models
enum falcon_e_model {
FALCON_UNKNOWN,
FALCON_7B,
FALCON_40B,
};
// computed for n_ctx == 2048
// TODO: dynamically determine these sizes
// needs modifications in ggml
typedef void (*offload_func_t)(struct ggml_tensor *tensor);
static const std::map<falcon_e_model, size_t> &FALCON_MEM_REQ_SCRATCH0() {
static std::map<falcon_e_model, size_t> k_sizes = {
{FALCON_7B, 512ull * MB},
{FALCON_40B, 1024ull * MB},
};
return k_sizes;
}
static const std::map<falcon_e_model, size_t> &FALCON_MEM_REQ_SCRATCH1() {
static std::map<falcon_e_model, size_t> k_sizes = {
{FALCON_7B, 512ull * MB},
{FALCON_40B, 1024ull * MB},
};
return k_sizes;
}
// this is mostly needed for temporary mul_mat buffers to dequantize the data
// not actually needed if BLAS is disabled
static const std::map<falcon_e_model, size_t> &FALCON_MEM_REQ_EVAL() {
static std::map<falcon_e_model, size_t> k_sizes = {
{FALCON_7B, 768ull * MB},
{FALCON_40B, 1536ull * MB},
};
return k_sizes;
}
// default hparams (Falcon 7B)
struct falcon_hparams {
int32_t n_vocab = 65024;
int32_t n_ctx = 2048;
int32_t n_embd = 4544;
int32_t n_head = 71;
int32_t n_head_kv = 1;
int32_t n_layer = 32;
int32_t n_falcon_type = 7; // 7 for Falcon-7B, 40 for Falcon-40B
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
bool operator!=(const falcon_hparams &other) const {
return static_cast<bool>(memcmp(this, &other, sizeof(falcon_hparams)));
}
};
static size_t FALCON_MEM_REQ_KV_SELF(const falcon_hparams &hparams,
ggml_type wtype, int32_t n_ctx) {
const int n_head_kv = hparams.n_head_kv;
const int head_dim = hparams.n_embd / hparams.n_head;
const int n_layer = hparams.n_layer;
const int64_t ne = n_head_kv * head_dim * n_layer * n_ctx;
return 2u * (ggml_tensor_overhead() + ne * ggml_type_size(wtype));
}
struct falcon_layer {
// normalization
struct ggml_tensor *input_layernorm;
struct ggml_tensor *input_layernorm_b;
struct ggml_tensor *attention_norm; // Falcon-40B only
struct ggml_tensor *attention_norm_b; // Falcon-40B only
// attention
struct ggml_tensor *query_key_value;
struct ggml_tensor *wo;
// ff
struct ggml_tensor *ffn_up;
struct ggml_tensor *ffn_down;
};
struct falcon_kv_cache {
struct ggml_tensor *k;
struct ggml_tensor *v;
struct ggml_context *ctx = NULL;
llama_ctx_buffer buf;
int n; // number of tokens currently in the cache
~falcon_kv_cache() {
if (ctx) {
ggml_free(ctx);
}
}
};
struct falcon_model {
falcon_e_model type = FALCON_UNKNOWN;
falcon_hparams hparams;
struct ggml_tensor *tok_embeddings;
struct ggml_tensor *output_norm;
struct ggml_tensor *output_norm_b;
struct ggml_tensor *lm_head;
// struct ggml_tensor* output;
std::vector<falcon_layer> layers;
int n_gpu_layers;
int i_gpu_start;
int i_gpu_last;
// context
struct ggml_context *ctx = NULL;
std::map<std::string, struct ggml_tensor *> tensors;
// key + value cache for the self attention
// TODO: move to llama_state
struct falcon_kv_cache kv_self;
// the model memory buffer
llama_ctx_buffer buf;
// model memory mapped file
std::unique_ptr<llama_mmap> mapping;
// objects representing data potentially being locked in memory
llama_mlock mlock_buf;
llama_mlock mlock_mmap;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
~falcon_model() {
if (ctx) {
ggml_free(ctx);
}
#ifdef GGML_USE_CUBLAS
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cuda_free_data(tensors_by_name[i].second);
}
#elif defined(GGML_USE_CLBLAST)
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cl_free_data(tensors_by_name[i].second);
}
#endif
}
};
struct falcon_context {
std::mt19937 rng;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
bool has_evaluated_once = false;
int64_t t_sample_us = 0;
int64_t t_eval_us = 0;
int64_t t_p_eval_us = 0;
int32_t n_sample = 0; // number of tokens sampled
int32_t n_eval = 0; // number of eval calls
int32_t n_p_eval =
0; // number of tokens in eval calls for the prompt (with batch size > 1)
falcon_model model;
llama_vocab vocab;
size_t mem_per_token = 0;
// decode output (2-dimensional array: [n_tokens][n_vocab])
std::vector<float> logits;
bool logits_all = false;
// input embedding (1-dimensional array: [n_embd])
std::vector<float> embedding;
// memory buffers used to evaluate the model
// TODO: move in llama_state
llama_ctx_buffer buf_compute;
llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
#ifdef GGML_USE_METAL
ggml_metal_context *ctx_metal = NULL;
#endif
int buf_last = 0;
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = {0};
void use_buf(struct ggml_context *ctx, int i) {
#if defined(LLAMA_USE_SCRATCH)
size_t last_size = 0;
if (i == -1) {
last_size = ggml_set_scratch(ctx, {
0,
0,
nullptr,
});
} else {
auto &buf = buf_scratch[i];
last_size = ggml_set_scratch(ctx, {
0,
buf.size,
buf.addr,
});
}
if (buf_last >= 0) {
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
}
buf_last = i;
#else
(void)i;
(void)ctx;
#endif
}
size_t get_buf_max_mem(int i) const {
#if defined(LLAMA_USE_SCRATCH)
return buf_max_size[i];
#else
(void)i;
return 0;
#endif
}
};
struct falcon_file_loader {
llama_file file;
llama_file_version file_version;
falcon_hparams hparams;
llama_vocab vocab;
falcon_file_loader(const char *fname, size_t file_idx,
llama_load_tensors_map &tensors_map)
: file(fname, "rb") {
read_magic();
if (file_version <= 1)
fprintf(stderr,
"falcon.cpp: file version %d - Use falcon_quantize to update "
"version and improve performance\n",
file_version);
read_hparams();
read_vocab();
read_tensor_metadata(file_idx, tensors_map);
}
void read_magic() {
uint32_t magic = file.read_u32();
if (magic == LLAMA_FILE_MAGIC_GGML) {
file_version = LLAMA_FILE_VERSION_GGML;
return;
}
uint32_t version = file.read_u32();
switch (magic) {
case LLAMA_FILE_MAGIC_GGMF:
switch (version) {
case 1:
file_version = LLAMA_FILE_VERSION_GGMF_V1;
return;
}
break;
case LLAMA_FILE_MAGIC_GGJT:
switch (version) {
case 1:
file_version = LLAMA_FILE_VERSION_GGJT_V1;
return;
case 2:
file_version = LLAMA_FILE_VERSION_GGJT_V2;
return;
case 3:
file_version = LLAMA_FILE_VERSION_GGJT_V3;
return;
}
}
throw std::runtime_error(
format("unknown (magic, version) combination: %08x, %08x; is this "
"really a GGML file?",
magic, version));
}
void read_hparams() {
hparams.n_vocab = file.read_u32();
hparams.n_embd = file.read_u32();
hparams.n_head = file.read_u32();
hparams.n_head_kv = file.read_u32();
hparams.n_layer = file.read_u32();
hparams.n_falcon_type = file.read_u32();
if (file_version == LLAMA_FILE_VERSION_GGML) {
int32_t ftype = file.read_u32();
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
hparams.ftype =
(enum llama_ftype)(hparams.ftype % GGML_QNT_VERSION_FACTOR);
} else {
hparams.ftype = (enum llama_ftype)file.read_u32();
}
// hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
void read_vocab() {
vocab.id_to_token.resize(hparams.n_vocab);
for (uint32_t i = 0; i < (uint32_t)hparams.n_vocab; i++) {
uint32_t len = file.read_u32();
std::string word = file.read_string(len);
float score = 0.0f; // flacon does not have scores in vocab, scores are a
// sentencepiece addition
if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
file.read_raw(&score, sizeof(score));
}
vocab.token_to_id[word] = i;
auto &tok_score = vocab.id_to_token[i];
tok_score.tok = std::move(word);
tok_score.score = score;
}
}
void read_tensor_metadata(size_t file_idx,
llama_load_tensors_map &tensors_map) {
while (file.tell() < file.size) {
llama_load_tensor_shard shard;
uint32_t n_dims = file.read_u32();
uint32_t name_len = file.read_u32();
shard.type = (enum ggml_type)file.read_u32();
shard.ne.resize(n_dims);
file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
std::string name = file.read_string(name_len);
if (n_dims < 1 || n_dims > 2) {
throw std::runtime_error(
format("falcon.cpp: tensor '%s' should not be %u-dimensional",
name.c_str(), n_dims));
}
switch (shard.type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
break;
default: {
throw std::runtime_error(
format("unrecognized tensor type %u\n", shard.type));
}
}
if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
// skip to the next multiple of 32 bytes
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
}
shard.file_idx = file_idx;
shard.file_off = file.tell();
shard.calc_size();
file.seek(shard.size, SEEK_CUR);
auto it = tensors_map.name_to_idx.find(name);
size_t idx;
if (it != tensors_map.name_to_idx.end()) {
idx = it->second;
} else {
tensors_map.tensors.emplace_back(name);
idx = tensors_map.tensors.size() - 1;
tensors_map.name_to_idx.emplace(name, idx);
}
tensors_map.tensors.at(idx).shards.push_back(shard);
}
}
};
struct falcon_file_saver {
llama_file file;
falcon_file_loader *any_file_loader;
falcon_file_saver(const char *fname, falcon_file_loader *any_file_loader,
enum llama_ftype new_ftype)
: file(fname, "wb"), any_file_loader(any_file_loader) {
fprintf(stderr, "falcon.cpp: saving model to %s\n", fname);
write_magic();
write_hparams(new_ftype);
write_vocab();
}
void write_magic() {
file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_u32(LLAMA_FILE_VERSION); // version
}
void write_hparams(enum llama_ftype new_ftype) {
const falcon_hparams &hparams = any_file_loader->hparams;
file.write_u32(hparams.n_vocab);
file.write_u32(hparams.n_embd);
file.write_u32(hparams.n_head);
file.write_u32(hparams.n_head_kv);
file.write_u32(hparams.n_layer);
file.write_u32(hparams.n_falcon_type);
file.write_u32(new_ftype);
}
void write_vocab() {
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
fprintf(stderr,
"falcon.cpp: WARNING: input is an old file that doesn't have "
"scores; will add dummy scores\n");
}
uint32_t n_vocab = any_file_loader->hparams.n_vocab;
for (uint32_t i = 0; i < n_vocab; i++) {
const auto &token_score = any_file_loader->vocab.id_to_token.at(i);
file.write_u32((uint32_t)token_score.tok.size());
file.write_raw(token_score.tok.data(), token_score.tok.size());
file.write_raw(&token_score.score, sizeof(token_score.score));
}
}
void write_tensor(llama_load_tensor &tensor, enum ggml_type new_type,
const void *new_data, size_t new_size) {
switch (new_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
break;
default:
LLAMA_ASSERT(false);
}
file.write_u32((uint32_t)tensor.ne.size());
file.write_u32((uint32_t)tensor.name.size());
file.write_u32(new_type);
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
file.write_raw(tensor.name.data(), tensor.name.size());
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
file.write_raw(new_data, new_size);
}
};
struct falcon_model_loader {
std::vector<std::unique_ptr<falcon_file_loader>> file_loaders;
llama_load_tensors_map tensors_map;
bool use_mmap;
size_t num_ggml_tensors_created = 0;
struct ggml_context *ggml_ctx = NULL;
std::unique_ptr<llama_mmap> mapping;
falcon_model_loader(const std::string &fname_base, bool use_mmap,
bool vocab_only) {
auto *first_file =
new falcon_file_loader(fname_base.c_str(), 0, tensors_map);
file_loaders.emplace_back(first_file);
uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
for (uint32_t i = 1; i < n_parts; i++) {
std::string fname = fname_base + "." + std::to_string(i);
auto *ith_file = new falcon_file_loader(fname.c_str(), i, tensors_map);
file_loaders.emplace_back(ith_file);
if (ith_file->hparams != first_file->hparams) {
throw std::runtime_error(
format("falcon.cpp: hparams inconsistent between files"));
}
}
if (!llama_mmap::SUPPORTED) {
use_mmap = false;
}
if (use_mmap && alignment_prevents_mmap()) {
fprintf(stderr,
"falcon.cpp: can't use mmap because tensors are not aligned; "
"convert to new format to avoid this\n");
use_mmap = false;
}
this->use_mmap = use_mmap;
for (llama_load_tensor &lt : tensors_map.tensors) {
lt.calc_all();
}
}
bool alignment_prevents_mmap() {
for (const llama_load_tensor &lt : tensors_map.tensors) {
for (const llama_load_tensor_shard &shard : lt.shards) {
if (shard.file_off & 3) {
return true;
}
}
}
return false;
}
uint32_t guess_n_parts() const {
auto it =
tensors_map.name_to_idx.find("transformer.word_embeddings.weight");
if (it == tensors_map.name_to_idx.end()) {
throw std::runtime_error(std::string("missing tok_embeddings.weight"));
}
const llama_load_tensor &lt = tensors_map.tensors.at(it->second);
return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
}
void calc_sizes(size_t *ctx_size_p, size_t *mmapped_size_p) const {
*ctx_size_p = *mmapped_size_p = 0;
for (const llama_load_tensor &lt : tensors_map.tensors) {
*ctx_size_p += ggml_tensor_overhead();
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
}
}
struct ggml_tensor *get_tensor(const std::string &name,
const std::vector<uint32_t> &ne,
ggml_backend backend) {
auto it = tensors_map.name_to_idx.find(name);
if (it == tensors_map.name_to_idx.end()) {
throw std::runtime_error(std::runtime_error(format(
"falcon.cpp: tensor '%s' is missing from model", name.c_str())));
}
llama_load_tensor &lt = tensors_map.tensors.at(it->second);
if (lt.ne != ne) {
throw std::runtime_error(
format("falcon.cpp: tensor '%s' has wrong shape; expected %s, got %s",
name.c_str(), llama_format_tensor_shape(ne).c_str(),
llama_format_tensor_shape(lt.ne).c_str()));
}
return get_tensor_for(lt, backend);
}
struct ggml_tensor *get_tensor_for(llama_load_tensor &lt,
ggml_backend backend) {
struct ggml_tensor *tensor;
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, true);
}
if (lt.ne.size() == 2) {
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
} else {
LLAMA_ASSERT(lt.ne.size() == 1);
tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
}
ggml_set_name(tensor, lt.name.c_str());
LLAMA_ASSERT(
lt.ggml_tensor ==
NULL); // if this fails, we called get_tensor twice on the same tensor
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, use_mmap);
}
tensor->backend = backend;
lt.ggml_tensor = tensor;
num_ggml_tensors_created++;
return tensor;
}
void done_getting_tensors() const {
if (num_ggml_tensors_created != tensors_map.tensors.size()) {
throw std::runtime_error(
std::string("falcon.cpp: file contained more tensors than expected"));
}
}
void load_all_data(llama_progress_callback progress_callback,
void *progress_callback_user_data, llama_mlock *lmlock) {
size_t data_size = 0;
size_t prefetch_size = 0;
size_t lock_size = 0;
for (const llama_load_tensor &lt : tensors_map.tensors) {
data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
prefetch_size += lt.size;
}
}
if (use_mmap) {
mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
if (lmlock) {
lmlock->init(mapping->addr);
}
}
size_t done_size = 0;
for (llama_load_tensor &lt : tensors_map.tensors) {
if (progress_callback) {
progress_callback((float)done_size / data_size,
progress_callback_user_data);
}
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught
// by load_data already
lt.data = (uint8_t *)lt.ggml_tensor->data;
// allocate temp buffer if not using mmap
if (!use_mmap && lt.data == NULL) {
GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
lt.data = (uint8_t *)malloc(ggml_nbytes(lt.ggml_tensor));
}
load_data_for(lt);
switch (lt.ggml_tensor->backend) {
case GGML_BACKEND_CPU:
lt.ggml_tensor->data = lt.data;
if (use_mmap && lmlock) {
lock_size += lt.size;
lmlock->grow_to(lock_size);
}
break;
#if defined(GGML_USE_CUBLAS)
case GGML_BACKEND_GPU:
case GGML_BACKEND_GPU_SPLIT:
ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#elif defined(GGML_USE_CLBLAST)
case GGML_BACKEND_GPU:
ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#endif
default:
continue;
}
done_size += lt.size;
}
}
void load_data_for(llama_load_tensor &lt) {
if (use_mmap) {
LLAMA_ASSERT(lt.shards.size() == 1);
lt.data = (uint8_t *)mapping->addr + lt.shards.at(0).file_off;
} else if (lt.split_type == SPLIT_NONE) {
llama_file &file = file_loaders.at(lt.shards.at(0).file_idx)->file;
file.seek(lt.shards.at(0).file_off, SEEK_SET);
file.read_raw(lt.data, lt.size);
} else if (lt.split_type == SPLIT_BY_ROWS) {
size_t offset = 0;
for (llama_load_tensor_shard &shard : lt.shards) {
llama_file &file = file_loaders.at(shard.file_idx)->file;
file.seek(shard.file_off, SEEK_SET);
file.read_raw(lt.data + offset, shard.size);
offset += shard.size;
}
LLAMA_ASSERT(offset == lt.size);
} else if (lt.split_type == SPLIT_BY_COLUMNS) {
// Let's load the data into temporary buffers to ensure the OS performs
// large loads.
std::vector<llama_buffer> tmp_bufs(lt.shards.size());
for (size_t i = 0; i < lt.shards.size(); i++) {
llama_load_tensor_shard &shard = lt.shards.at(i);
llama_file &file = file_loaders.at(shard.file_idx)->file;
file.seek(shard.file_off, SEEK_SET);
tmp_bufs.at(i).resize(shard.size);
file.read_raw(tmp_bufs.at(i).addr, shard.size);
}
// Then reshape.
size_t num_rows = lt.ne.at(1);
size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
size_t out_offset = 0;
for (size_t row = 0; row < num_rows; row++) {
for (llama_buffer &tmp_buf : tmp_bufs) {
memcpy(lt.data + out_offset, tmp_buf.addr + row * per_shard_row_size,
per_shard_row_size);
out_offset += per_shard_row_size;
}
}
LLAMA_ASSERT(out_offset == lt.size);
}
if (0) {
print_checksum(lt);
}
}
static void print_checksum(llama_load_tensor &lt) {
uint32_t sum = 0;
for (size_t i = 0; i < lt.size; i++) {
uint8_t byte = lt.data[i];
sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
}
fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
llama_format_tensor_shape(lt.ne).c_str(), lt.size);
}
};
//
// kv cache
//
static bool kv_cache_init(const struct falcon_hparams &hparams,
struct falcon_kv_cache &cache, ggml_type wtype,
int n_ctx, int n_gpu_layers) {
const int64_t n_layer = hparams.n_layer;
const int64_t head_dim = hparams.n_embd / hparams.n_head;
const int64_t n_elements =
hparams.n_layer * n_ctx * head_dim * hparams.n_head_kv;
cache.buf.resize(FALCON_MEM_REQ_KV_SELF(hparams, wtype, n_ctx));
struct ggml_init_params params;
params.mem_size = cache.buf.size;
params.mem_buffer = cache.buf.addr;
params.no_alloc = false;
cache.ctx = ggml_init(params);
if (!cache.ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
ggml_set_name(cache.k, "cache_k");
ggml_set_name(cache.v, "cache_v");
(void)n_gpu_layers;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer + 1) {
ggml_cuda_assign_buffers_no_scratch(cache.k);
ggml_cuda_assign_buffers_no_scratch(cache.v);
}
#endif // GGML_USE_CUBLAS
return true;
}
struct falcon_context_params falcon_context_default_params() {
struct falcon_context_params result = {
/*.n_ctx =*/512,
/*.n_batch =*/512,
/*.n_gpu_layers =*/0,
/*.i_gpu_start =*/-1,
/*.i_gpu_last =*/-1,
/*.main_gpu =*/0,
/*.tensor_split =*/{0},
/*.seed =*/-1,
/*.f16_kv =*/false,
/*.logits_all =*/false,
/*.vocab_only =*/false,
/*.use_mmap =*/true,
/*.use_mlock =*/false,
/*.embedding =*/false,
/*.progress_callback =*/nullptr,
/*.progress_callback_user_data =*/nullptr,
};
return result;
}
struct falcon_model_quantize_params falcon_model_quantize_default_params() {
struct falcon_model_quantize_params result = {
/*.nthread =*/0,
/*.ftype =*/LLAMA_FTYPE_MOSTLY_Q5_1,
/*.allow_requantize =*/false,
/*.quantize_output_tensor =*/true,
};
return result;
}
//
// model loading
//
static const char *falcon_model_type_name(falcon_e_model type) {
switch (type) {
case FALCON_7B:
return "7B";
case FALCON_40B:
return "40B";
default:
LLAMA_ASSERT(false);
}
}
// dynamically gets all tensors from a layer
std::vector<ggml_tensor *> get_tensors_from_layer(falcon_layer &layer) {
std::vector<ggml_tensor *> tensors;
ggml_tensor **tensor_ptr = reinterpret_cast<ggml_tensor **>(
&layer); // Cast to the pointer to ggml_tensor pointer
// Iterate through the members and store their addresses in the vector
for (std::size_t i = 0; i < sizeof(falcon_layer) / sizeof(ggml_tensor *);
++i) {
tensors.push_back(tensor_ptr[i]);
}
return tensors;
}
// get vram size of all tensors in a layer (todo: split handling)
size_t calculate_layer_vram_bytes(const falcon_layer &layer) {
size_t size = 0;
auto tensors = get_tensors_from_layer(const_cast<falcon_layer &>(layer));
// Add the size of each member with GPU backend
for (const auto &tensor : tensors) {
if (tensor != nullptr && tensor->backend != GGML_BACKEND_CPU) {
size += ggml_nbytes(tensor);
}
}
return size;
}
static void falcon_model_load_internal(
const std::string &fname, falcon_context &lctx, int n_ctx, int n_batch,
int n_gpu_layers, int main_gpu, const float *tensor_split,
ggml_type memory_type, bool use_mmap, bool use_mlock, bool vocab_only,
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
lctx.t_start_us = ggml_time_us();
std::unique_ptr<falcon_model_loader> ml(
new falcon_model_loader(fname, use_mmap, vocab_only));
lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
auto &model = lctx.model;
model.hparams = ml->file_loaders.at(0)->hparams;
model.n_gpu_layers = n_gpu_layers;
llama_file_version file_version = ml->file_loaders.at(0)->file_version;
auto &hparams = model.hparams;
{
switch (hparams.n_layer) {
case 32:
model.type = falcon_e_model::FALCON_7B;
break;
case 60:
model.type = falcon_e_model::FALCON_40B;
break;
default: {
if (hparams.n_falcon_type == 7) {
model.type = falcon_e_model::FALCON_7B;
} else if (hparams.n_falcon_type == 40) {
model.type = falcon_e_model::FALCON_40B;
} else {
LLAMA_ASSERT(false);
}
} break;
}
hparams.n_ctx = n_ctx;
}
const uint32_t n_ff = 4 * model.hparams.n_embd;
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
throw std::runtime_error(
format("this format is no longer supported (see "
"https://github.com/ggerganov/llama.cpp/pull/1405)"));
}
}
if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
throw std::runtime_error(
format("this format is no longer supported (see "
"https://github.com/ggerganov/llama.cpp/pull/1508)"));
}
}
if (vocab_only) {
return;
}
auto &ctx = model.ctx;
size_t ctx_size;
size_t mmapped_size;
ml->calc_sizes(&ctx_size, &mmapped_size);
// create the ggml context
{
lctx.model.buf.resize(ctx_size);
if (use_mlock) {
lctx.model.mlock_buf.init(lctx.model.buf.addr);
lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
}
struct ggml_init_params params = {
/*.mem_size =*/lctx.model.buf.size,
/*.mem_buffer =*/lctx.model.buf.addr,
/*.no_alloc =*/ml->use_mmap,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
throw std::runtime_error(format("ggml_init() failed"));
}
}
(void)main_gpu;
#if defined(GGML_USE_CUBLAS)
ggml_cuda_set_main_device(main_gpu);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
#elif defined(GGML_USE_CLBLAST)
fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
#else
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
#endif
size_t vram_total = 0;
size_t vram_free = 0;
const size_t vram_reserved =
512 *
MB; // that amount of VRAM is to stay free on GPU (headroom for other
// processes - may be reduced in pure server environments)
size_t vram_overhead =
1250 *
MB; // this amount of vram is estimated for non weight storage buffers on
// VRAM (no big difference between 7B and 40B, needs to increase when
// more work is offloaded in the future)
#if defined(GGML_USE_CUBLAS)
// cublas is used in 32 bit mode, temporary cuda storage/conversion buffers
// are needed for batch ingestion ( could be run in 16 bit mode without
// performance downgrade and save half the VRAM)
if (model.type == FALCON_40B && n_batch > 1) {
vram_overhead += (1024 + 288 + 256) * MB;
}
if (model.type == FALCON_7B && n_batch > 1) {
vram_overhead += (315 + 80 + 78) * MB;
}
cudaMemGetInfo(
&vram_free,
&vram_total); // this should go in ggml-cuda.cu but I don't want to make
// Johannes life harder by modifying that yet
#endif
// prepare memory for the weights
size_t vram_weights = 0;
size_t vram_scratch = 0;
(void)vram_scratch;
(void)n_batch;
// calculate scratch buffer size and allocate it
#ifdef GGML_USE_CUBLAS
// vram_scratch = n_batch * MB;
vram_scratch = 0; // these are not used until we have multi operation support
ggml_cuda_set_scratch_size(vram_scratch);
#endif // GGML_USE_CUBLAS
{
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_head = hparams.n_head;
const uint32_t n_head_kv = hparams.n_head_kv;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_ff = 4 * model.hparams.n_embd;
const uint32_t n_vocab = hparams.n_vocab;
const uint32_t head_dim = hparams.n_embd / hparams.n_head;
ml->ggml_ctx = ctx;
model.tok_embeddings = ml->get_tensor("transformer.word_embeddings.weight",
{n_embd, n_vocab}, GGML_BACKEND_CPU);
ggml_backend backend_norm;
ggml_backend backend_output;
// disabled norm/output offloading until further tests, causes silent crash
// at the moment
if (n_gpu_layers > int(n_layer) && false) { // NOLINT
backend_norm = LLAMA_BACKEND_OFFLOAD;
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
// "output" tensor
{
model.output_norm =
ml->get_tensor("transformer.ln_f.weight", {n_embd}, backend_norm);
model.output_norm_b =
ml->get_tensor("transformer.ln_f.bias", {n_embd}, backend_norm);
model.lm_head =
ml->get_tensor("lm_head.weight", {n_embd, n_vocab}, backend_output);
}
if (backend_norm != GGML_BACKEND_CPU) {
vram_weights +=
ggml_nbytes(model.output_norm) + ggml_nbytes(model.output_norm_b);
vram_free -=
ggml_nbytes(model.output_norm) + ggml_nbytes(model.output_norm_b);
}
if (backend_output != GGML_BACKEND_CPU) {
vram_weights += ggml_nbytes(model.lm_head);
vram_free -= ggml_nbytes(model.lm_head);
}
int i_gpu_start = n_layer - n_gpu_layers;
if (i_gpu_start < 0)
i_gpu_start = 0; // n_gpu_layers can be larger than n_layer
int i_gpu_last = n_layer; // allows to terminate the offloading earlier.
// TODO: instead do a proper calculation run and
// determine the start before the loop
model.i_gpu_start = i_gpu_start;
model.i_gpu_last = i_gpu_last; // if VRAM doesn't run out i_gpu_last is
// always the last layer
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = (int(i) < i_gpu_start || int(i) > i_gpu_last)
? GGML_BACKEND_CPU
: LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split =
(int(i) < i_gpu_start || int(i) > i_gpu_last)
? GGML_BACKEND_CPU
: LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto &layer = model.layers[i];
std::string layers_i = "layers." + std::to_string(i);
std::string str_i = std::to_string(i);
if (model.type == FALCON_40B) {
layer.input_layernorm =
ml->get_tensor("transformer.h." + str_i + ".ln_mlp.weight",
{n_embd}, GGML_BACKEND_CPU);
layer.input_layernorm_b =
ml->get_tensor("transformer.h." + str_i + ".ln_mlp.bias", {n_embd},
GGML_BACKEND_CPU);
layer.attention_norm =
ml->get_tensor("transformer.h." + str_i + ".ln_attn.weight",
{n_embd}, GGML_BACKEND_CPU);
layer.attention_norm_b =
ml->get_tensor("transformer.h." + str_i + ".ln_attn.bias", {n_embd},
GGML_BACKEND_CPU);
} else // FALCON_7B
{
layer.input_layernorm =
ml->get_tensor("transformer.h." + str_i + ".input_layernorm.weight",
{n_embd}, backend);
layer.input_layernorm_b =
ml->get_tensor("transformer.h." + str_i + ".input_layernorm.bias",
{n_embd}, GGML_BACKEND_CPU);
}
layer.query_key_value = ml->get_tensor(
"transformer.h." + str_i + ".self_attention.query_key_value.weight",
{n_embd, (n_head_kv * 2 + n_head) * head_dim}, backend_split);
layer.wo = ml->get_tensor(
"transformer.h." + str_i + ".self_attention.dense.weight",
{n_embd, n_embd}, backend_split);
layer.ffn_up =
ml->get_tensor("transformer.h." + str_i + ".mlp.dense_h_to_4h.weight",
{n_embd, n_ff}, backend_split); // before gelu
layer.ffn_down =
ml->get_tensor("transformer.h." + str_i + ".mlp.dense_4h_to_h.weight",
{n_ff, n_embd}, backend_split); // after gelu
if (backend != GGML_BACKEND_CPU) {
size_t vram_layer = 0;
vram_layer = calculate_layer_vram_bytes(layer);
vram_weights += vram_layer;
vram_free =
(vram_layer > vram_free)
? 0
: vram_free -
vram_layer; // simulate the layer being loaded in VRAM
// test if we have enough VRAM to offload the next layer
if (i < n_layer && vram_free <= (vram_overhead + vram_scratch +
vram_reserved + vram_layer)) {
fprintf(stderr,
"INFO: Not enough VRAM to load all requested layers - at "
"layer %d of %d: skipping\n",
i, n_layer);
model.n_gpu_layers = n_gpu_layers;
i_gpu_last = i;
model.i_gpu_last = i_gpu_last;
n_gpu_layers = i_gpu_last - i_gpu_start;
printf("INFO: %d layers will be offloaded to GPU (layers %d to %d)\n",
n_gpu_layers, i_gpu_start + 1, i_gpu_last + 1);
}
}
}
}
ml->done_getting_tensors();
// print memory requirements
{
// this is the total memory required to run the inference
// TODO: this calculation is still wrong
int64_t mem_required = ctx_size + mmapped_size -
vram_weights + // weights in VRAM not in memory
FALCON_MEM_REQ_SCRATCH0().at(model.type) +
FALCON_MEM_REQ_SCRATCH1().at(model.type) +
FALCON_MEM_REQ_EVAL().at(model.type);
if (mem_required < 0) mem_required = 0;
// this is the memory required by one llama_state
const size_t mem_required_state =
FALCON_MEM_REQ_KV_SELF(model.hparams, memory_type, n_ctx);
// moved scratch allocation of vram to top
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
#else
(void)n_gpu_layers;
#endif
}
// populate `tensors_by_name`
for (llama_load_tensor &lt : ml->tensors_map.tensors) {
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
}
(void)tensor_split;
#if defined(GGML_USE_CUBLAS)
{ ggml_cuda_set_tensor_split(tensor_split); }
#endif
ml->load_all_data(progress_callback, progress_callback_user_data,
use_mlock ? &lctx.model.mlock_mmap : NULL);
if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data);
}
#if defined(GGML_USE_CUBLAS)
// size_t vram_free_simulated = vram_free;
cudaMemGetInfo(
&vram_free,
&vram_total); // this should go in ggml-cuda.cu but I don't want to make
// Johannes life harder by modifying that yet
#endif
model.mapping = std::move(ml->mapping);
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
}
static bool falcon_model_load(const std::string &fname, falcon_context &lctx,
int n_ctx, int n_batch, int n_gpu_layers,
int main_gpu, float *tensor_split,
ggml_type memory_type, bool use_mmap,
bool use_mlock, bool vocab_only,
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
try {
falcon_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers,
main_gpu, tensor_split, memory_type, use_mmap,
use_mlock, vocab_only, progress_callback,
progress_callback_user_data);
return true;
} catch (const std::exception &err) {
fprintf(stderr, "error loading model: %s\n", err.what());
return false;
}
}
// evaluate the transformer
//
// - lctx: llama context
// - tokens: new batch of tokens to process
// - n_past: the context size so far
// - n_threads: number of threads to use
// - cgraph_fname: filename of the exported computation graph
//
static bool falcon_eval_internal(falcon_context &lctx,
const llama_token *tokens, const int n_tokens,
const int n_past, const int n_threads,
const char *cgraph_fname, int debug_timings) {
const int64_t t_start_us = ggml_time_us();
const int N = n_tokens;
// const int N = embd_inp.size();
const auto &model = lctx.model;
const auto &hparams = model.hparams;
const auto &kv_self = model.kv_self;
LLAMA_ASSERT(!!kv_self.ctx);
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_head_kv = hparams.n_head_kv;
const int n_vocab = hparams.n_vocab;
const int n_falcon_type = hparams.n_falcon_type;
const int n_gpu_layers = model.n_gpu_layers;
const size_t head_dim = n_embd / n_head; // == n_rot in llama
auto &mem_per_token = lctx.mem_per_token;
auto &buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/buf_compute.size,
/*.mem_buffer =*/buf_compute.addr,
/*.no_alloc =*/false,
};
struct ggml_context *ctx0 = ggml_init(params);
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are
// degrading the performance
ggml_cgraph gf = {};
gf.n_threads =
N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
struct ggml_tensor *embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
ggml_set_name(embd, "embd");
memcpy(embd->data, tokens, N * ggml_element_size(embd));
struct ggml_tensor *cur;
struct ggml_tensor *inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
struct ggml_tensor *repeat_dummy =
ggml_new_tensor_3d(ctx0, inpL->type, head_dim, N + n_past, n_head);
struct ggml_tensor *layernorm_output;
ggml_type wtype = GGML_TYPE_F32;
// ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)
// (model.hparams.ftype));
const int sizeof_wtype = ggml_type_sizef(wtype);
// const int i_gpu_start = n_layer - n_gpu_layers;
const int i_gpu_start = lctx.model.i_gpu_start;
const int i_gpu_last =
lctx.model.i_gpu_last > 0 ? lctx.model.i_gpu_last : n_layer;
(void)i_gpu_start;
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in
// llama_load_model_internal in that case ggml_cuda_assign_buffers has no
// effect
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
offload_func_t offload_func_kqv = llama_nop;
#ifdef GGML_USE_CUBLAS
// todo: use either a flag in model/params or a backend test to determine if
// norm/output are on GPU
if (n_gpu_layers > n_layer) {
offload_func_nr = ggml_cuda_assign_buffers;
}
if (n_gpu_layers > n_layer + 1) {
offload_func_kqv = ggml_cuda_assign_buffers;
}
#endif // GGML_USE_CUBLAS
for (int il = 0; il < n_layer; ++il) {
offload_func_t offload_func = llama_nop;
#ifdef GGML_USE_CUBLAS
if (il >= i_gpu_start && il < i_gpu_last) {
offload_func =
ggml_cuda_assign_buffers; // sets the output backend to GPU
}
#endif // GGML_USE_CUBLAS
struct ggml_tensor *inpSA = inpL;
lctx.use_buf(ctx0, 0);
// self-attention
{
layernorm_output = ggml_norm(ctx0, inpL);
ggml_tensor *il_a =
ggml_mul(ctx0, layernorm_output, model.layers[il].input_layernorm);
offload_func(il_a); // (todo: uses vram scratch)
layernorm_output =
ggml_add(ctx0, il_a,
ggml_repeat(ctx0, model.layers[il].input_layernorm_b,
layernorm_output));
offload_func(layernorm_output);
ggml_set_name(layernorm_output, "layernorm_output");
if (model.type == FALCON_40B || n_falcon_type == 40) {
cur = ggml_norm(ctx0, inpL);
cur = ggml_add(
ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
cur),
ggml_repeat(ctx0, model.layers[il].attention_norm_b, cur));
} else {
cur = layernorm_output;
}
// compute QKV
cur = ggml_mul_mat(ctx0, model.layers[il].query_key_value, cur);
// offload_func(cur);
// Note that the strides for Kcur, Vcur are set up so that the
// resulting views are misaligned with the tensor's storage
// (by applying the K/V offset we shift the tensor's original
// view to stick out behind the viewed QKV tensor's allocated
// memory, so to say). This is ok because no actual accesses
// happen to that out-of-range memory, but it can require some
// trickery when trying to accurately dump these views for
// debugging.
struct ggml_tensor *Qcur =
ggml_view_3d(ctx0, cur, head_dim, n_head, N, head_dim * sizeof_wtype,
head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype, 0);
ggml_set_name(Qcur, "Qcur");
struct ggml_tensor *Kcur = ggml_view_3d(
ctx0, cur, head_dim, n_head_kv, N, head_dim * sizeof_wtype,
head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype,
head_dim * n_head * sizeof_wtype);
ggml_set_name(Kcur, "Kcur");
struct ggml_tensor *Vcur = ggml_view_3d(
ctx0, cur, head_dim, n_head_kv, N, head_dim * sizeof_wtype,
head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype,
head_dim * (n_head + n_head_kv) * sizeof_wtype);
ggml_set_name(Vcur, "Vcur");
// using mode = 2 for neox mode
Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, head_dim, 2);
Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, head_dim, 2);
// store key and value to memory
{
struct ggml_tensor *k =
ggml_view_1d(ctx0, kv_self.k, N * n_head_kv * head_dim,
(ggml_element_size(kv_self.k) * n_head_kv * head_dim) *
(il * n_ctx + n_past));
ggml_set_name(k, "k");
struct ggml_tensor *v =
ggml_view_1d(ctx0, kv_self.v, N * n_head_kv * head_dim,
(ggml_element_size(kv_self.v) * n_head_kv * head_dim) *
(il * n_ctx + n_past));
ggml_set_name(v, "v");
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor *K = ggml_permute(
ctx0,
ggml_reshape_3d(
ctx0,
ggml_view_1d(ctx0, kv_self.k, (n_past + N) * n_head_kv * head_dim,
il * n_ctx * ggml_element_size(kv_self.k) *
n_head_kv * head_dim),
head_dim, n_head_kv, n_past + N),
0, 2, 1, 3);
// K * Q
K = ggml_cont(ctx0, ggml_repeat2(ctx0, K, repeat_dummy));
ggml_set_name(K, "K");
struct ggml_tensor *Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
ggml_set_name(Q, "Q");
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor *KQ_scaled = ggml_scale_inplace(
ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(head_dim))));
ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor *KQ_masked =
ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor *KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0,
// 3).contiguous()
struct ggml_tensor *V = ggml_permute(
ctx0,
ggml_reshape_3d(
ctx0,
ggml_view_1d(ctx0, kv_self.v, (n_past + N) * n_head_kv * head_dim,
il * n_ctx * ggml_element_size(model.kv_self.v) *
n_head_kv * head_dim),
head_dim, n_head_kv, n_past + N),
0, 2, 1, 3);
V = ggml_cont(ctx0,
ggml_transpose(ctx0, ggml_repeat2(ctx0, V, repeat_dummy)));
ggml_set_name(V, "V");
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
ggml_set_name(KQV, "KQV");
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor *KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0, KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection
{
cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
// offload_func(cur);
ggml_set_name(cur, "result_wo");
}
} // end of attention
lctx.use_buf(ctx0, 1);
// ggml_cuda_set_scratch(1);
struct ggml_tensor *inpFF = layernorm_output;
ggml_set_name(inpFF, "inpFF");
struct ggml_tensor *attn_out =
ggml_cpy(ctx0, cur, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// offload_func(attn_out);
ggml_set_name(attn_out, "attn_out");
{
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up, inpFF);
// offload_func(cur);
ggml_set_name(cur, "inpFF*ff_up");
cur = ggml_gelu(ctx0, cur);
// offload_func(cur);
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
// offload_func(cur);
ggml_set_name(cur, "gelu_cur*ff_down");
}
cur = ggml_add(ctx0, cur, attn_out);
cur = ggml_add(ctx0, cur, inpL);
ggml_set_name(cur, "inpFF_+_result_attn_out");
// input for next layer
inpL = cur;
} // end of layer loop
lctx.use_buf(ctx0, 0);
// ggml_cuda_set_scratch(0);
// used at the end to optionally extract the embeddings
struct ggml_tensor *embeddings = NULL;
offload_func_t offload_func = llama_nop;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > 0 && n_layer >= i_gpu_start && n_layer <= i_gpu_last) {
offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU
}
#endif // GGML_USE_CUBLAS
// norm
{
cur = ggml_norm(ctx0, cur);
// offload_func(cur);
ggml_set_name(cur, "norm_cur");
// inpL = ln_f_g*inpL + ln_f_b
cur = ggml_add(
ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.output_norm, cur), cur),
ggml_repeat(ctx0, model.output_norm_b, cur));
// offload_func(cur);
ggml_set_name(cur, "result_norm");
embeddings = cur;
}
// language modelling head
cur = ggml_mul_mat(ctx0, model.lm_head, cur);
// offload_func(cur);
ggml_set_name(cur, "result_lm_head");
// cur = ggml_mul_mat(ctx0, model.output, cur);
// ggml_set_name(cur, "result_output");
lctx.use_buf(ctx0, -1);
// logits -> probs
// cur = ggml_soft_max_inplace(ctx0, cur);
// run the computation
ggml_build_forward_expand(&gf, cur);
#if 0
// use to confirm vram_overhead is correct
size_t vram_total=0;
size_t vram_free=0;
#if defined(GGML_USE_CUBLAS)
cudaMemGetInfo(&vram_free, &vram_total); // this should go in ggml-cuda.cu but I don't want to make Johannes life harder by modifying that yet
fprintf(stderr, "\n%s: VRAM free: %7.2f MB of %7.2f MB (in use: %7.2f MB)\n", __func__, vram_free/MB*1.0, vram_total/MB*1.0, (vram_total-vram_free)/MB*1.0);
#endif
#endif
#ifdef GGML_USE_METAL
if (lctx.ctx_metal && N == 1) {
ggml_metal_graph_compute(lctx.ctx_metal, &gf);
ggml_metal_get_tensor(lctx.ctx_metal, cur);
} else {
// IMPORTANT:
// Since we don't have efficient Matrix x Matrix Metal multiplication yet,
// we fallback to vanilla ggml_graph_compute(). It uses Apple's Accelerate
// CBLAS API which takes advantage of the ANE or the AMX coprocessor.
//
// When we implement Matrix x Matrix Metal multiplication, we can avoid this
// branch. But for now, we have focused only on Matrix x Vector Metal
// multiplication.
//
// TODO: avoid these syncs via shared memory (ref #1696)
//
if (lctx.ctx_metal) {
// We need to sync the GPU KV cache with the CPU KV cache
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
}
ggml_graph_compute(ctx0, &gf);
}
#else
ggml_graph_compute(ctx0, &gf);
#endif
if (cgraph_fname) {
ggml_graph_export(&gf, cgraph_fname);
}
// plot the computation graph in dot format (for debugging purposes)
// if (n_past%100 == 0) {
// ggml_graph_dump_dot(&gf, NULL, "llama.dot");
//}
// embd_w.resize(n_vocab*N);
// memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N);
// update kv token count
lctx.model.kv_self.n = n_past + N;
// extract logits
{
auto &logits_out = lctx.logits;
if (lctx.logits_all) {
logits_out.resize(n_vocab * N);
memcpy(logits_out.data(), (float *)ggml_get_data(cur),
sizeof(float) * n_vocab * N);
} else {
// return result for just the last token
logits_out.resize(n_vocab);
memcpy(logits_out.data(),
(float *)ggml_get_data(cur) + (n_vocab * (N - 1)),
sizeof(float) * n_vocab);
}
}
// extract embeddings
if (!lctx.embedding.empty()) {
auto &embedding_out = lctx.embedding;
embedding_out.resize(n_embd);
memcpy(embedding_out.data(),
(float *)ggml_get_data(embeddings) + (n_embd * (N - 1)),
sizeof(float) * n_embd);
}
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0) / N;
}
#if 0
printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
ggml_used_mem(ctx0)/1024.0/1024.0,
lctx.get_buf_max_mem(0)/1024.0/1024.0,
lctx.get_buf_max_mem(1)/1024.0/1024.0);
#endif
ggml_free(ctx0);
// measure the performance only for the single-token evals
if (N == 1) {
lctx.t_eval_us += ggml_time_us() - t_start_us;
lctx.n_eval++;
} else if (N > 1) {
lctx.t_p_eval_us += ggml_time_us() - t_start_us;
lctx.n_p_eval += N;
}
return true;
}
//
// tokenizer
//
static std::vector<llama_vocab::id> falcon_tokenize(const llama_vocab &vocab,
const std::string &text,
bool bos) {
llama_tokenizer tokenizer(vocab);
std::vector<llama_vocab::id> output;
if (text.empty()) {
return output;
}
if (bos) {
output.push_back(falcon_token_bos());
}
tokenizer.tokenize(text, output);
return output;
}
//
// sampling
//
void falcon_sample_softmax(struct falcon_context *ctx,
llama_token_data_array *candidates) {
assert(candidates->size > 0);
const int64_t t_start_sample_us = ggml_time_us();
// Sort the logits in descending order
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size,
[](const llama_token_data &a, const llama_token_data &b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
float max_l = candidates->data[0].logit;
float cum_sum = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
float p = expf(candidates->data[i].logit - max_l);
candidates->data[i].p = p;
cum_sum += p;
}
for (size_t i = 0; i < candidates->size; ++i) {
candidates->data[i].p /= cum_sum;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void falcon_sample_top_k(struct falcon_context *ctx,
llama_token_data_array *candidates, int k,
size_t min_keep) {
const int64_t t_start_sample_us = ggml_time_us();
k = std::max(k, (int)min_keep);
k = std::min(k, (int)candidates->size);
// Sort scores in descending order
if (!candidates->sorted) {
auto comp = [](const llama_token_data &a, const llama_token_data &b) {
return a.logit > b.logit;
};
if (k == (int)candidates->size) {
std::sort(candidates->data, candidates->data + candidates->size, comp);
} else {
std::partial_sort(candidates->data, candidates->data + k,
candidates->data + candidates->size, comp);
}
candidates->sorted = true;
}
candidates->size = k;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void falcon_sample_top_p(struct falcon_context *ctx,
llama_token_data_array *candidates, float p,
size_t min_keep) {
if (p >= 1.0f) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
falcon_sample_softmax(ctx, candidates);
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < candidates->size; ++i) {
cum_sum += candidates->data[i].p;
// Check if the running sum is greater than p or if we have kept at least
// min_keep tokens
if (cum_sum > p && i >= min_keep) {
last_idx = i;
break;
}
}
// Resize the output vector to keep only the top-p tokens
candidates->size = last_idx;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void falcon_sample_tail_free(struct falcon_context *ctx,
llama_token_data_array *candidates, float z,
size_t min_keep) {
if (z >= 1.0f || candidates->size <= 2) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
falcon_sample_softmax(nullptr, candidates);
// Compute the first and second derivatives
std::vector<float> first_derivatives(candidates->size - 1);
std::vector<float> second_derivatives(candidates->size - 2);
for (size_t i = 0; i < first_derivatives.size(); ++i) {
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
}
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
}
// Calculate absolute value of second derivatives
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = abs(second_derivatives[i]);
}
// Normalize the second derivatives
float second_derivatives_sum = std::accumulate(
second_derivatives.begin(), second_derivatives.end(), 0.0f);
for (float &value : second_derivatives) {
value /= second_derivatives_sum;
}
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < second_derivatives.size(); ++i) {
cum_sum += second_derivatives[i];
// Check if the running sum is greater than z or if we have kept at least
// min_keep tokens
if (cum_sum > z && i >= min_keep) {
last_idx = i;
break;
}
}
// Resize the output vector to keep only the tokens above the tail location
candidates->size = last_idx;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void falcon_sample_typical(struct falcon_context *ctx,
llama_token_data_array *candidates, float p,
size_t min_keep) {
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if (p >= 1.0f) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
// Compute the softmax of logits and calculate entropy
falcon_sample_softmax(nullptr, candidates);
float entropy = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
entropy += -candidates->data[i].p * logf(candidates->data[i].p);
}
// Compute the absolute difference between negative log probability and
// entropy for each candidate
std::vector<float> shifted_scores;
for (size_t i = 0; i < candidates->size; ++i) {
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
shifted_scores.push_back(shifted_score);
}
// Sort tokens based on the shifted_scores and their corresponding indices
std::vector<size_t> indices(candidates->size);
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
return shifted_scores[a] < shifted_scores[b];
});
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = indices.size();
for (size_t i = 0; i < indices.size(); ++i) {
size_t idx = indices[i];
cum_sum += candidates->data[idx].p;
// Check if the running sum is greater than typical or if we have kept at
// least min_keep tokens
if (cum_sum > p && i >= min_keep - 1) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the locally typical tokens
std::vector<llama_token_data> new_candidates;
for (size_t i = 0; i < last_idx; ++i) {
size_t idx = indices[i];
new_candidates.push_back(candidates->data[idx]);
}
// Replace the data in candidates with the new_candidates data
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
candidates->size = new_candidates.size();
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void falcon_sample_temperature(struct falcon_context *ctx,
llama_token_data_array *candidates_p,
float temp) {
const int64_t t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].logit /= temp;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void falcon_sample_repetition_penalty(struct falcon_context *ctx,
llama_token_data_array *candidates,
const llama_token *last_tokens,
size_t last_tokens_size, float penalty) {
if (last_tokens_size == 0 || penalty == 1.0f) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < candidates->size; ++i) {
const auto *token_iter = std::find(
last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
if (token_iter == last_tokens + last_tokens_size) {
continue;
}
// The academic publication that described this technique actually just only
// divided, but that would cause tokens with negative logits to become more
// likely, which is obviously wrong. This is common fix for this problem,
// which is to multiply by the penalty instead of dividing.
if (candidates->data[i].logit <= 0) {
candidates->data[i].logit *= penalty;
} else {
candidates->data[i].logit /= penalty;
}
}
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void falcon_sample_frequency_and_presence_penalties(
struct falcon_context *ctx, llama_token_data_array *candidates,
const llama_token *last_tokens_p, size_t last_tokens_size,
float alpha_frequency, float alpha_presence) {
if (last_tokens_size == 0 ||
(alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
// Create a frequency map to count occurrences of each token in last_tokens
std::unordered_map<llama_token, int> token_count;
for (size_t i = 0; i < last_tokens_size; ++i) {
token_count[last_tokens_p[i]]++;
}
// Apply frequency and presence penalties to the candidates
for (size_t i = 0; i < candidates->size; ++i) {
auto token_iter = token_count.find(candidates->data[i].id);
if (token_iter == token_count.end()) {
continue;
}
int count = token_iter->second;
candidates->data[i].logit -=
float(count) * alpha_frequency + float(count > 0) * alpha_presence;
}
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
llama_token falcon_sample_token_mirostat(struct falcon_context *ctx,
llama_token_data_array *candidates,
float tau, float eta, int m,
float *mu) {
assert(ctx);
auto N = float(falcon_n_vocab(ctx));
int64_t t_start_sample_us;
t_start_sample_us = ggml_time_us();
falcon_sample_softmax(nullptr, candidates);
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0;
float sum_ti_bi = 0.0;
float sum_ti_sq = 0.0;
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
float t_i = logf(float(i + 2) / float(i + 1));
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
sum_ti_bi += t_i * b_i;
sum_ti_sq += t_i * t_i;
}
s_hat = sum_ti_bi / sum_ti_sq;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1;
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)),
1 / s_hat);
// Sample the next word X using top-k sampling
falcon_sample_top_k(nullptr, candidates, int(k), 1);
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
llama_token X = falcon_sample_token(ctx, candidates);
t_start_sample_us = ggml_time_us();
// Compute error as the difference between observed surprise and target
// surprise value
size_t X_idx = std::distance(
candidates->data,
std::find_if(candidates->data, candidates->data + candidates->size,
[&](const llama_token_data &candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
}
return X;
}
llama_token falcon_sample_token_mirostat_v2(struct falcon_context *ctx,
llama_token_data_array *candidates,
float tau, float eta, float *mu) {
assert(ctx);
int64_t t_start_sample_us;
t_start_sample_us = ggml_time_us();
falcon_sample_softmax(ctx, candidates);
// Truncate the words with surprise values greater than mu
candidates->size = std::distance(
candidates->data,
std::find_if(candidates->data, candidates->data + candidates->size,
[&](const llama_token_data &candidate) {
return -log2f(candidate.p) > *mu;
}));
if (candidates->size == 0) {
candidates->size = 1;
}
// Normalize the probabilities of the remaining words
falcon_sample_softmax(ctx, candidates);
// Sample the next word X from the remaining words
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
llama_token X = falcon_sample_token(ctx, candidates);
t_start_sample_us = ggml_time_us();
// Compute error as the difference between observed surprise and target
// surprise value
size_t X_idx = std::distance(
candidates->data,
std::find_if(candidates->data, candidates->data + candidates->size,
[&](const llama_token_data &candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
return X;
}
llama_token falcon_sample_token_greedy(struct falcon_context *ctx,
llama_token_data_array *candidates) {
const int64_t t_start_sample_us = ggml_time_us();
// Find max element
auto *max_iter = std::max_element(
candidates->data, candidates->data + candidates->size,
[](const llama_token_data &a, const llama_token_data &b) {
return a.logit < b.logit;
});
llama_token result = max_iter->id;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
}
return result;
}
llama_token falcon_sample_token(struct falcon_context *ctx,
llama_token_data_array *candidates) {
assert(ctx);
const int64_t t_start_sample_us = ggml_time_us();
falcon_sample_softmax(nullptr, candidates);
std::vector<float> probs;
probs.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
probs.push_back(candidates->data[i].p);
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
auto &rng = ctx->rng;
int idx = dist(rng);
llama_token result = candidates->data[idx].id;
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
return result;
}
//
// quantization
//
static void falcon_model_quantize_internal(
const std::string &fname_inp, const std::string &fname_out,
const falcon_model_quantize_params *params) {
ggml_type quantized_type;
llama_ftype ftype = params->ftype;
int nthread = params->nthread;
switch (params->ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_0:
quantized_type = GGML_TYPE_Q4_0;
break;
case LLAMA_FTYPE_MOSTLY_Q4_1:
quantized_type = GGML_TYPE_Q4_1;
break;
case LLAMA_FTYPE_MOSTLY_Q5_0:
quantized_type = GGML_TYPE_Q5_0;
break;
case LLAMA_FTYPE_MOSTLY_Q5_1:
quantized_type = GGML_TYPE_Q5_1;
break;
case LLAMA_FTYPE_MOSTLY_Q8_0:
quantized_type = GGML_TYPE_Q8_0;
break;
case LLAMA_FTYPE_MOSTLY_F16:
quantized_type = GGML_TYPE_F16;
break;
case LLAMA_FTYPE_ALL_F32:
quantized_type = GGML_TYPE_F32;
break;
#ifdef GGML_USE_K_QUANTS
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K:
quantized_type = GGML_TYPE_Q2_K;
break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
case LLAMA_FTYPE_MOSTLY_Q3_K_L:
quantized_type = GGML_TYPE_Q3_K;
break;
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
case LLAMA_FTYPE_MOSTLY_Q4_K_M:
quantized_type = GGML_TYPE_Q4_K;
break;
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M:
quantized_type = GGML_TYPE_Q5_K;
break;
case LLAMA_FTYPE_MOSTLY_Q6_K:
quantized_type = GGML_TYPE_Q6_K;
break;
#endif
default:
throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
if (nthread <= 0) {
nthread = std::thread::hardware_concurrency();
}
std::unique_ptr<falcon_model_loader> model_loader(
new falcon_model_loader(fname_inp, /*use_mmap*/ false,
/*vocab_only*/ false));
falcon_file_saver file_saver(
fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype);
#ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0;
int n_feed_forward_w2 = 0;
for (auto &tensor : model_loader->tensors_map.tensors) {
if (tensor.name.find("attention.wv.weight") != std::string::npos) {
++n_attention_wv;
} else if (tensor.name.find("feed_forward.w2.weight") !=
std::string::npos) {
++n_feed_forward_w2;
}
}
int i_attention_wv = 0;
int i_feed_forward_w2 = 0;
#endif
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<int64_t> hist_all(1 << 4, 0);
std::vector<std::thread> workers;
std::mutex mutex;
size_t idx = 0;
for (llama_load_tensor &tensor : model_loader->tensors_map.tensors) {
llama_buffer read_data;
read_data.resize(tensor.size);
tensor.data = read_data.addr;
model_loader->load_data_for(tensor);
printf("[%4zu/%4zu] %36s - %16s, type = %6s, ", ++idx,
model_loader->tensors_map.tensors.size(), tensor.name.c_str(),
llama_format_tensor_shape(tensor.ne).c_str(),
ggml_type_name(tensor.type));
// This used to be a regex, but <regex> has an extreme cost to compile
// times.
bool quantize = tensor.name.rfind("weight") ==
tensor.name.size() - 6; // ends with 'weight'?
// quantize only 2D tensors
quantize &= (tensor.ne.size() == 2);
quantize &=
params->quantize_output_tensor || tensor.name != "output.weight";
quantize &= quantized_type != tensor.type;
enum ggml_type new_type;
void *new_data;
size_t new_size;
llama_buffer work;
if (!quantize) {
new_type = tensor.type;
new_data = tensor.data;
new_size = tensor.size;
printf("(Not quantizing) size = %8.3f MB\n",
tensor.size / 1024.0 / 1024.0);
} else {
new_type = quantized_type;
#ifdef GGML_USE_K_QUANTS
if (quantized_type == GGML_TYPE_Q2_K ||
quantized_type == GGML_TYPE_Q3_K ||
quantized_type == GGML_TYPE_Q4_K ||
quantized_type == GGML_TYPE_Q5_K ||
quantized_type == GGML_TYPE_Q6_K) {
int nx = tensor.ne.at(0);
int ny = tensor.ne.at(0);
if (nx % QK_K != 0 || ny % QK_K != 0) {
fprintf(stderr,
"\n\n========================= Tensor sizes %d x %d are not "
"divisible by %d\n",
nx, ny, QK_K);
fprintf(stderr,
"This is required to be able to use k-quants for now!\n");
fprintf(stderr,
"============================================================"
"============================\n\n");
throw std::runtime_error("Unsupported tensor size encountered\n");
}
}
// if (tensor.name == ".mlp.dense_") {
// new_type = GGML_TYPE_Q6_K;
// }
// TODO falcon
#endif
float *f32_data;
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
llama_buffer f32_conv_buf;
if (tensor.type == GGML_TYPE_F32) {
f32_data = (float *)tensor.data;
} else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled",
ggml_type_name(tensor.type)));
} else {
llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
f32_data = (float *)f32_conv_buf.addr;
}
printf("quantizing .. ");
fflush(stdout);
work.resize(nelements * 4); // upper bound on size
new_data = work.addr;
std::vector<int64_t> hist_cur(1 << 4, 0);
int chunk_size = 32 * 512;
const int nchunk = (nelements + chunk_size - 1) / chunk_size;
const int nthread_use =
nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
if (nthread_use < 2) {
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0,
nelements, hist_cur.data());
} else {
size_t counter = 0;
new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type,
f32_data, new_data, nelements, chunk_size]() {
std::vector<int64_t> local_hist;
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
size_t first = counter;
counter += chunk_size;
if (first >= nelements) {
if (!local_hist.empty()) {
for (int j = 0; j < int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
new_size += local_size;
}
break;
}
lock.unlock();
size_t last = std::min(nelements, first + chunk_size);
if (local_hist.empty()) {
local_hist.resize(hist_cur.size(), 0);
}
local_size +=
ggml_quantize_chunk(new_type, f32_data, new_data, first,
last - first, local_hist.data());
}
};
if ((int)workers.size() < nthread_use - 1) {
workers.resize(nthread_use - 1);
}
for (int it = 0; it < nthread_use - 1; ++it) {
workers[it] = std::thread(compute);
}
compute();
for (int it = 0; it < nthread_use - 1; ++it) {
workers[it].join();
}
}
printf("size = %8.2f MB -> %8.2f MB | hist: ",
tensor.size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
int64_t tot_count = 0;
for (size_t i = 0; i < hist_cur.size(); i++) {
hist_all[i] += hist_cur[i];
tot_count += hist_cur[i];
}
if (tot_count > 0) {
for (size_t i = 0; i < hist_cur.size(); i++) {
printf("%5.3f ", hist_cur[i] / float(nelements));
}
}
printf("\n");
}
total_size_org += tensor.size;
total_size_new += new_size;
file_saver.write_tensor(tensor, new_type, new_data, new_size);
}
printf("%s: model size = %8.2f MB\n", __func__,
total_size_org / 1024.0 / 1024.0);
printf("%s: quant size = %8.2f MB\n", __func__,
total_size_new / 1024.0 / 1024.0);
{
int64_t sum_all = 0;
for (size_t i = 0; i < hist_all.size(); i++) {
sum_all += hist_all[i];
}
if (sum_all > 0) {
printf("%s: hist: ", __func__);
for (size_t i = 0; i < hist_all.size(); i++) {
printf("%5.3f ", hist_all[i] / float(sum_all));
}
printf("\n");
}
}
}
//
// interface implementation
//
struct falcon_context *falcon_init_from_file(
const char *path_model, struct falcon_context_params params) {
ggml_time_init();
falcon_context *ctx = new falcon_context;
if (params.seed < 0) {
params.seed = time(NULL);
}
unsigned cur_percentage = 0;
if (params.progress_callback == NULL) {
params.progress_callback_user_data = &cur_percentage;
params.progress_callback = [](float progress, void *ctx) {
unsigned *cur_percentage_p = (unsigned *)ctx;
unsigned percentage = (unsigned)(100 * progress);
while (percentage > *cur_percentage_p) {
*cur_percentage_p = percentage;
}
};
}
ctx->rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!falcon_model_load(
path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers,
params.main_gpu, params.tensor_split, memory_type, params.use_mmap,
params.use_mlock, params.vocab_only, params.progress_callback,
params.progress_callback_user_data)) {
fprintf(stderr, "%s: failed to load model\n", __func__);
falcon_free(ctx);
return nullptr;
}
// model_load_internal() may change this if VRAM runs out
params.n_gpu_layers = ctx->model.n_gpu_layers;
params.i_gpu_start =
ctx->model.i_gpu_start; // first layer that's GPU accelerated
params.i_gpu_last =
ctx->model.i_gpu_last; // last layer that's GPU accelerated
// reserve memory for context buffers
if (!params.vocab_only) {
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type,
ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n",
__func__);
falcon_free(ctx);
return nullptr;
}
const auto &hparams = ctx->model.hparams;
// resized during inference
if (params.logits_all) {
ctx->logits.reserve(hparams.n_ctx * hparams.n_vocab);
} else {
ctx->logits.reserve(hparams.n_vocab);
}
if (params.embedding) {
ctx->embedding.resize(hparams.n_embd);
}
ctx->buf_compute.resize(FALCON_MEM_REQ_EVAL().at(ctx->model.type));
ctx->buf_scratch[0].resize(FALCON_MEM_REQ_SCRATCH0().at(ctx->model.type));
ctx->buf_scratch[1].resize(FALCON_MEM_REQ_SCRATCH1().at(ctx->model.type));
}
#ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) {
// this allocates all Metal resources and memory buffers
ctx->ctx_metal = ggml_metal_init();
void *data_ptr = NULL;
size_t data_size = 0;
if (params.use_mmap) {
data_ptr = ctx->model.mapping->addr;
data_size = ctx->model.mapping->size;
} else {
data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
data_size = ggml_get_mem_size(ctx->model.ctx);
}
#define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \
fprintf(stderr, "%s: failed to add buffer\n", __func__); \
falcon_free(ctx); \
return NULL; \
}
LLAMA_METAL_CHECK_BUF(
ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(
ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv",
ctx->model.kv_self.buf.addr,
ctx->model.kv_self.buf.size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0",
ctx->buf_scratch[0].addr,
ctx->buf_scratch[0].size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1",
ctx->buf_scratch[1].addr,
ctx->buf_scratch[1].size));
#undef LLAMA_METAL_CHECK_BUF
}
#endif
return ctx;
}
void falcon_free(struct falcon_context *ctx) { delete ctx; }
int falcon_model_quantize(const char *fname_inp, const char *fname_out,
const falcon_model_quantize_params *params) {
try {
falcon_model_quantize_internal(fname_inp, fname_out, params);
return 0;
} catch (const std::exception &err) {
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
return 1;
}
}
int falcon_apply_lora_from_file_internal(struct falcon_context *ctx,
const char *path_lora,
const char *path_base_model,
int n_threads) {
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n",
__func__, path_lora);
auto &model = ctx->model;
const int64_t t_start_lora_us = ggml_time_us();
auto fin = std::ifstream(path_lora, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
return 1;
}
// verify magic and version
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != LLAMA_FILE_MAGIC_GGLA) {
fprintf(stderr, "%s: bad file magic\n", __func__);
return 1;
}
uint32_t format_version;
fin.read((char *)&format_version, sizeof(format_version));
if (format_version != 1) {
fprintf(stderr, "%s: unsupported file version\n", __func__);
return 1;
}
}
int32_t lora_r;
int32_t lora_alpha;
fin.read((char *)&lora_r, sizeof(lora_r));
fin.read((char *)&lora_alpha, sizeof(lora_alpha));
float scaling = (float)lora_alpha / (float)lora_r;
fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r,
lora_alpha, scaling);
// create a temporary ggml context to store the lora tensors
// todo: calculate size from biggest possible tensor
std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
struct ggml_init_params params;
params.mem_size = lora_buf.size();
params.mem_buffer = lora_buf.data();
params.no_alloc = false;
ggml_context *lora_ctx = ggml_init(params);
std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
// create a name -> tensor map of the model to accelerate lookups
std::unordered_map<std::string, struct ggml_tensor *> model_tensors;
for (auto &kv : model.tensors_by_name) {
model_tensors.insert(kv);
}
// load base model
std::unique_ptr<falcon_model_loader> model_loader;
ggml_context *base_ctx = NULL;
llama_buffer base_buf;
if (path_base_model) {
fprintf(stderr, "%s: loading base model from '%s'\n", __func__,
path_base_model);
model_loader.reset(new falcon_model_loader(
path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
size_t ctx_size;
size_t mmapped_size;
model_loader->calc_sizes(&ctx_size, &mmapped_size);
base_buf.resize(ctx_size);
ggml_init_params base_params;
base_params.mem_size = base_buf.size;
base_params.mem_buffer = base_buf.addr;
base_params.no_alloc = model_loader->use_mmap;
base_ctx = ggml_init(base_params);
model_loader->ggml_ctx = base_ctx;
// maybe this should in falcon_model_loader
if (model_loader->use_mmap) {
model_loader->mapping.reset(new llama_mmap(
&model_loader->file_loaders.at(0)->file, /* prefetch */ 0));
}
}
// read tensors and apply
bool warned = false;
int n_tensors = 0;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int32_t ne[2] = {1, 1};
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
}
std::string name;
{
char buf[1024];
fin.read(buf, length);
name = std::string(buf, length);
}
// check for lora suffix and get the type of tensor
const std::string lora_suffix = ".lora";
size_t pos = name.rfind(lora_suffix);
if (pos == std::string::npos) {
fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__,
name.c_str());
return 1;
}
std::string lora_type = name.substr(pos + lora_suffix.length());
std::string base_name = name;
base_name.erase(pos);
// fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__,
// name.c_str(),base_name.c_str(), lora_type.c_str());
if (model_tensors.find(base_name) == model_tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__,
name.data());
return 1;
}
// create ggml tensor
ggml_type wtype;
switch (ftype) {
case 0:
wtype = GGML_TYPE_F32;
break;
case 1:
wtype = GGML_TYPE_F16;
break;
default: {
fprintf(stderr, "%s: invalid tensor data type '%d'\n", __func__, ftype);
return false;
}
}
ggml_tensor *lora_tensor;
if (n_dims == 2) {
lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
} else {
fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__,
n_dims);
return 1;
}
// load tensor data
size_t offset = fin.tellg();
size_t tensor_data_size = ggml_nbytes(lora_tensor);
offset = (offset + 31) & -32;
fin.seekg(offset);
fin.read((char *)lora_tensor->data, tensor_data_size);
lora_tensors[name] = lora_tensor;
// check if we have both A and B tensors and apply
if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
ggml_tensor *dest_t = model_tensors[base_name];
ggml_tensor *base_t;
if (model_loader) {
// load from base model
if (model_loader->tensors_map.name_to_idx.find(base_name) ==
model_loader->tensors_map.name_to_idx.end()) {
fprintf(stderr, "%s: error: tensor '%s' not found in base model\n",
__func__, base_name.c_str());
return 1;
}
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
llama_load_tensor &lt = model_loader->tensors_map.tensors[idx];
base_t = model_loader->get_tensor(
base_name, {(uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1]},
GGML_BACKEND_CPU);
lt.data = (uint8_t *)lt.ggml_tensor->data;
model_loader->load_data_for(lt);
lt.ggml_tensor->data = lt.data;
} else {
base_t = dest_t;
}
if (ggml_is_quantized(base_t->type)) {
if (!warned) {
fprintf(stderr,
"%s: warning: using a lora adapter with a quantized model "
"may result in poor quality, "
"use a f16 or f32 base model with --lora-base\n",
__func__);
warned = true;
}
}
ggml_tensor *loraA = lora_tensors[base_name + ".loraA"];
ggml_tensor *loraB = lora_tensors[base_name + ".loraB"];
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
fprintf(stderr,
"%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64
");"
" are you sure that this adapter is for this model?\n",
__func__, base_t->ne[0], loraA->ne[1]);
return 1;
}
// w = w + BA*s
ggml_tensor *BA = ggml_mul_mat(lora_ctx, loraA, loraB);
if (scaling != 1.0f) {
ggml_tensor *scale_tensor = ggml_new_f32(lora_ctx, scaling);
BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
}
ggml_tensor *r;
if (base_t == dest_t) {
r = ggml_add_inplace(lora_ctx, dest_t, BA);
} else {
r = ggml_add(lora_ctx, base_t, BA);
r = ggml_cpy(lora_ctx, r, dest_t);
}
struct ggml_cgraph gf = ggml_build_forward(r);
gf.n_threads = n_threads;
ggml_graph_compute(lora_ctx, &gf);
// we won't need these tensors again, reset the context to save memory
ggml_free(lora_ctx);
lora_ctx = ggml_init(params);
lora_tensors.clear();
n_tensors++;
if (n_tensors % 4 == 0) {
fprintf(stderr, ".");
}
}
}
// TODO: this should be in a destructor, it will leak on failure
ggml_free(lora_ctx);
if (base_ctx) {
ggml_free(base_ctx);
}
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
return 0;
}
int falcon_apply_lora_from_file(struct falcon_context *ctx,
const char *path_lora,
const char *path_base_model, int n_threads) {
try {
return falcon_apply_lora_from_file_internal(ctx, path_lora, path_base_model,
n_threads);
} catch (const std::exception &err) {
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__,
err.what());
return 1;
}
}
int falcon_get_kv_cache_token_count(const struct falcon_context *ctx) {
return ctx->model.kv_self.n;
}
#define LLAMA_MAX_RNG_STATE (64 * 1024)
void falcon_set_rng_seed(struct falcon_context *ctx, int seed) {
if (seed < 0) {
seed = time(NULL);
}
ctx->rng.seed(seed);
}
// Returns the *maximum* size of the state
size_t falcon_get_state_size(const struct falcon_context *ctx) {
// we don't know size of rng until we actually serialize it. so reserve more
// than enough memory for its serialized state. for reference,
// std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = LLAMA_MAX_RNG_STATE;
const size_t s_logits_capacity = sizeof(size_t);
const size_t s_logits_size = sizeof(size_t);
const size_t s_logits = ctx->logits.capacity() * sizeof(float);
const size_t s_embedding_size = sizeof(size_t);
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = ctx->model.kv_self.buf.size;
const size_t s_total =
(+s_rng_size + s_rng + s_logits_capacity + s_logits_size + s_logits +
s_embedding_size + s_embedding + s_kv_size + s_kv_ntok + s_kv);
return s_total;
}
// Copies the state to the specified destination address
size_t falcon_copy_state_data(struct falcon_context *ctx, uint8_t *dst) {
uint8_t *out = dst;
// copy rng
{
std::stringstream rng_ss;
rng_ss << ctx->rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[LLAMA_MAX_RNG_STATE];
memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
memcpy(out, &rng_size, sizeof(rng_size));
out += sizeof(rng_size);
memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE);
out += LLAMA_MAX_RNG_STATE;
}
// copy logits
{
const size_t logits_cap = ctx->logits.capacity();
const size_t logits_size = ctx->logits.size();
memcpy(out, &logits_cap, sizeof(logits_cap));
out += sizeof(logits_cap);
memcpy(out, &logits_size, sizeof(logits_size));
out += sizeof(logits_size);
if (logits_size) {
memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
}
out += logits_cap * sizeof(float);
}
// copy embeddings
{
const size_t embedding_size = ctx->embedding.size();
memcpy(out, &embedding_size, sizeof(embedding_size));
out += sizeof(embedding_size);
if (embedding_size) {
memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
out += embedding_size * sizeof(float);
}
}
// copy kv cache
{
const auto &kv_self = ctx->model.kv_self;
const auto &hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
const int n_ctx = hparams.n_ctx;
const size_t kv_size = kv_self.buf.size;
const int kv_ntok = falcon_get_kv_cache_token_count(ctx);
memcpy(out, &kv_size, sizeof(kv_size));
out += sizeof(kv_size);
memcpy(out, &kv_ntok, sizeof(kv_ntok));
out += sizeof(kv_ntok);
if (kv_size) {
const size_t elt_size = ggml_element_size(kv_self.k);
char buffer[4096];
ggml_context *cpy_ctx =
ggml_init({sizeof(buffer), buffer, /* no_alloc */ true});
ggml_cgraph gf{};
gf.n_threads = 1;
ggml_tensor *kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd,
kv_ntok, n_layer);
kout3d->data = out;
out += ggml_nbytes(kout3d);
ggml_tensor *vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type,
kv_ntok, n_embd, n_layer);
vout3d->data = out;
out += ggml_nbytes(vout3d);
ggml_tensor *k3d =
ggml_view_3d(cpy_ctx, kv_self.k, n_embd, kv_ntok, n_layer,
elt_size * n_embd, elt_size * n_embd * n_ctx, 0);
ggml_tensor *v3d =
ggml_view_3d(cpy_ctx, kv_self.v, kv_ntok, n_embd, n_layer,
elt_size * n_ctx, elt_size * n_ctx * n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
ggml_graph_compute(cpy_ctx, &gf);
ggml_free(cpy_ctx);
}
}
const size_t written = out - dst;
const size_t max_size = falcon_get_state_size(ctx);
LLAMA_ASSERT(written <= max_size);
return written;
}
// Sets the state reading from the specified source address
size_t falcon_set_state_data(struct falcon_context *ctx, uint8_t *src) {
uint8_t *inp = src;
// set rng
{
size_t rng_size;
char rng_buf[LLAMA_MAX_RNG_STATE];
memcpy(&rng_size, inp, sizeof(rng_size));
inp += sizeof(rng_size);
memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE);
inp += LLAMA_MAX_RNG_STATE;
std::stringstream rng_ss;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> ctx->rng;
LLAMA_ASSERT(rng_ss.fail() == false);
}
// set logits
{
size_t logits_cap;
size_t logits_size;
memcpy(&logits_cap, inp, sizeof(logits_cap));
inp += sizeof(logits_cap);
memcpy(&logits_size, inp, sizeof(logits_size));
inp += sizeof(logits_size);
LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
if (logits_size) {
ctx->logits.resize(logits_size);
memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
}
inp += logits_cap * sizeof(float);
}
// set embeddings
{
size_t embedding_size;
memcpy(&embedding_size, inp, sizeof(embedding_size));
inp += sizeof(embedding_size);
LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
if (embedding_size) {
memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
inp += embedding_size * sizeof(float);
}
}
// set kv cache
{
const auto &kv_self = ctx->model.kv_self;
const auto &hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
const int n_ctx = hparams.n_ctx;
size_t kv_size;
int kv_ntok;
memcpy(&kv_size, inp, sizeof(kv_size));
inp += sizeof(kv_size);
memcpy(&kv_ntok, inp, sizeof(kv_ntok));
inp += sizeof(kv_ntok);
if (kv_size) {
LLAMA_ASSERT(kv_self.buf.size == kv_size);
const size_t elt_size = ggml_element_size(kv_self.k);
char buffer[4096];
ggml_context *cpy_ctx =
ggml_init({sizeof(buffer), buffer, /* no_alloc */ true});
ggml_cgraph gf{};
gf.n_threads = 1;
ggml_tensor *kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd,
kv_ntok, n_layer);
kin3d->data = (void *)inp;
inp += ggml_nbytes(kin3d);
ggml_tensor *vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok,
n_embd, n_layer);
vin3d->data = (void *)inp;
inp += ggml_nbytes(vin3d);
ggml_tensor *k3d =
ggml_view_3d(cpy_ctx, kv_self.k, n_embd, kv_ntok, n_layer,
elt_size * n_embd, elt_size * n_embd * n_ctx, 0);
ggml_tensor *v3d =
ggml_view_3d(cpy_ctx, kv_self.v, kv_ntok, n_embd, n_layer,
elt_size * n_ctx, elt_size * n_ctx * n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
ggml_graph_compute(cpy_ctx, &gf);
ggml_free(cpy_ctx);
}
ctx->model.kv_self.n = kv_ntok;
}
const size_t nread = inp - src;
const size_t max_size = falcon_get_state_size(ctx);
LLAMA_ASSERT(nread <= max_size);
return nread;
}
bool falcon_load_session_file(struct falcon_context *ctx,
const char *path_session, llama_token *tokens_out,
size_t n_token_capacity,
size_t *n_token_count_out) {
llama_file file(path_session, "rb");
// sanity checks
{
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
fprintf(stderr,
"%s : unknown (magic, version) for session file: %08x, %08x\n",
__func__, magic, version);
return false;
}
falcon_hparams session_hparams;
file.read_raw(&session_hparams, sizeof(falcon_hparams));
if (session_hparams != ctx->model.hparams) {
fprintf(stderr, "%s : model hparams didn't match from session file!\n",
__func__);
return false;
}
}
// load the prompt
{
const uint32_t n_token_count = file.read_u32();
if (n_token_count > n_token_capacity) {
fprintf(stderr,
"%s : token count in session file exceeded capacity! %u > %zu\n",
__func__, n_token_count, n_token_capacity);
return false;
}
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
}
// restore the context state
{
const size_t n_state_size_cur = file.size - file.tell();
const size_t n_state_size_max = falcon_get_state_size(ctx);
if (n_state_size_cur > n_state_size_max) {
fprintf(
stderr,
"%s : the state size in session file is too big! max %zu, got %zu\n",
__func__, n_state_size_max, n_state_size_cur);
return false;
}
std::vector<uint8_t> state_data(n_state_size_max);
file.read_raw(state_data.data(), n_state_size_cur);
falcon_set_state_data(ctx, state_data.data());
}
return true;
}
bool falcon_save_session_file(struct falcon_context *ctx,
const char *path_session,
const llama_token *tokens, size_t n_token_count) {
llama_file file(path_session, "wb");
file.write_u32(LLAMA_SESSION_MAGIC);
file.write_u32(LLAMA_SESSION_VERSION);
file.write_raw(&ctx->model.hparams, sizeof(falcon_hparams));
// save the prompt
file.write_u32((uint32_t)n_token_count);
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
// save the context state
{
const size_t n_state_size_max = falcon_get_state_size(ctx);
std::vector<uint8_t> state_data(n_state_size_max);
const size_t n_state_size_cur =
falcon_copy_state_data(ctx, state_data.data());
file.write_raw(state_data.data(), n_state_size_cur);
}
return true;
}
int falcon_eval(struct falcon_context *ctx, const llama_token *tokens,
int n_tokens, int n_past, int n_threads, int debug_timings) {
if (!falcon_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads, nullptr,
debug_timings)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
return 1;
}
// get a more accurate load time, upon first eval
// TODO: fix this
if (!ctx->has_evaluated_once) {
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
ctx->has_evaluated_once = true;
}
return 0;
}
int falcon_eval_export(struct falcon_context *ctx, const char *fname) {
const int n_batch = 1;
const int n_ctx = 512 - n_batch;
const std::vector<llama_token> tmp(n_batch, falcon_token_bos());
if (!falcon_eval_internal(*ctx, tmp.data(), tmp.size(), n_ctx, 1, fname, 0)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
return 1;
}
return 0;
}
int falcon_tokenize(struct falcon_context *ctx, const char *text,
llama_token *tokens, int n_max_tokens, bool add_bos) {
auto res = falcon_tokenize(ctx->vocab, text, add_bos);
if (n_max_tokens < (int)res.size()) {
fprintf(stderr, "%s: too many tokens\n", __func__);
return -((int)res.size());
}
for (size_t i = 0; i < res.size(); i++) {
tokens[i] = res[i];
}
return res.size();
}
int falcon_n_vocab(const struct falcon_context *ctx) {
return ctx->vocab.id_to_token.size();
}
int falcon_n_ctx(const struct falcon_context *ctx) {
return ctx->model.hparams.n_ctx;
}
int falcon_n_embd(const struct falcon_context *ctx) {
return ctx->model.hparams.n_embd;
}
int falcon_get_vocab(const struct falcon_context *ctx, const char **strings,
float *scores, int capacity) {
int n = std::min(capacity, (int)ctx->vocab.id_to_token.size());
for (int i = 0; i < n; ++i) {
strings[i] = ctx->vocab.id_to_token[i].tok.c_str();
scores[i] = ctx->vocab.id_to_token[i].score;
}
return n;
}
float *falcon_get_logits(struct falcon_context *ctx) {
return ctx->logits.data();
}
float *falcon_get_embeddings(struct falcon_context *ctx) {
return ctx->embedding.data();
}
const char *falcon_token_to_str(const struct falcon_context *ctx,
llama_token token) {
if (token >= falcon_n_vocab(ctx)) {
return nullptr;
}
return ctx->vocab.id_to_token[token].tok.c_str();
}
llama_token falcon_token_bos() { return 11; }
llama_token falcon_token_eos() { return 11; }
llama_token falcon_token_nl() { return 193; }
llama_token falcon_token_cr() { return 195; }
void falcon_print_timings(struct falcon_context *ctx) {
const int64_t t_end_us = ggml_time_us();
const int32_t n_sample = std::max(1, ctx->n_sample);
const int32_t n_eval = std::max(1, ctx->n_eval);
const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
fprintf(stderr, "\n");
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__,
ctx->t_load_us / 1000.0);
fprintf(stderr,
"%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n",
__func__, 1e-3 * ctx->t_sample_us, n_sample,
1e-3 * ctx->t_sample_us / n_sample);
fprintf(stderr,
"%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n",
__func__, 1e-3 * ctx->t_p_eval_us, n_p_eval,
1e-3 * ctx->t_p_eval_us / n_p_eval);
fprintf(stderr,
"%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n",
__func__, 1e-3 * ctx->t_eval_us, n_eval,
1e-3 * ctx->t_eval_us / n_eval);
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__,
(t_end_us - ctx->t_start_us) / 1000.0);
}
void falcon_reset_timings(struct falcon_context *ctx) {
ctx->t_start_us = ggml_time_us();
ctx->t_sample_us = ctx->n_sample = 0;
ctx->t_eval_us = ctx->n_eval = 0;
ctx->t_p_eval_us = ctx->n_p_eval = 0;
}
const char *falcon_print_system_info(void) {
static std::string s;
s = "";
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
return s.c_str();
}
// For internal test use
std::vector<std::pair<std::string, struct ggml_tensor *>>
&llama_internal_get_tensor_map(struct falcon_context *ctx) {
return ctx->model.tensors_by_name;
}