ML-Motivators commited on
Commit
956bfd7
Β·
verified Β·
1 Parent(s): 183cb58

Upload app (3).py

Browse files
Files changed (1) hide show
  1. app (3).py +313 -0
app (3).py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
4
+ from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
5
+ from src.unet_hacked_tryon import UNet2DConditionModel
6
+ from transformers import (
7
+ CLIPImageProcessor,
8
+ CLIPVisionModelWithProjection,
9
+ CLIPTextModel,
10
+ CLIPTextModelWithProjection,
11
+ )
12
+ from diffusers import DDPMScheduler,AutoencoderKL
13
+ from typing import List
14
+
15
+ import torch
16
+ import os
17
+ from transformers import AutoTokenizer
18
+ import spaces
19
+ import numpy as np
20
+ from utils_mask import get_mask_location
21
+ from torchvision import transforms
22
+ import apply_net
23
+ from preprocess.humanparsing.run_parsing import Parsing
24
+ from preprocess.openpose.run_openpose import OpenPose
25
+ from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
+ from torchvision.transforms.functional import to_pil_image
27
+
28
+
29
+ def pil_to_binary_mask(pil_image, threshold=0):
30
+ np_image = np.array(pil_image)
31
+ grayscale_image = Image.fromarray(np_image).convert("L")
32
+ binary_mask = np.array(grayscale_image) > threshold
33
+ mask = np.zeros(binary_mask.shape, dtype=np.uint8)
34
+ for i in range(binary_mask.shape[0]):
35
+ for j in range(binary_mask.shape[1]):
36
+ if binary_mask[i,j] == True :
37
+ mask[i,j] = 1
38
+ mask = (mask*255).astype(np.uint8)
39
+ output_mask = Image.fromarray(mask)
40
+ return output_mask
41
+
42
+
43
+ base_path = 'yisol/IDM-VTON'
44
+ example_path = os.path.join(os.path.dirname(__file__), 'example')
45
+
46
+ unet = UNet2DConditionModel.from_pretrained(
47
+ base_path,
48
+ subfolder="unet",
49
+ torch_dtype=torch.float16,
50
+ )
51
+ unet.requires_grad_(False)
52
+ tokenizer_one = AutoTokenizer.from_pretrained(
53
+ base_path,
54
+ subfolder="tokenizer",
55
+ revision=None,
56
+ use_fast=False,
57
+ )
58
+ tokenizer_two = AutoTokenizer.from_pretrained(
59
+ base_path,
60
+ subfolder="tokenizer_2",
61
+ revision=None,
62
+ use_fast=False,
63
+ )
64
+ noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
+
66
+ text_encoder_one = CLIPTextModel.from_pretrained(
67
+ base_path,
68
+ subfolder="text_encoder",
69
+ torch_dtype=torch.float16,
70
+ )
71
+ text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
72
+ base_path,
73
+ subfolder="text_encoder_2",
74
+ torch_dtype=torch.float16,
75
+ )
76
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
+ base_path,
78
+ subfolder="image_encoder",
79
+ torch_dtype=torch.float16,
80
+ )
81
+ vae = AutoencoderKL.from_pretrained(base_path,
82
+ subfolder="vae",
83
+ torch_dtype=torch.float16,
84
+ )
85
+
86
+ # "stabilityai/stable-diffusion-xl-base-1.0",
87
+ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
+ base_path,
89
+ subfolder="unet_encoder",
90
+ torch_dtype=torch.float16,
91
+ )
92
+
93
+ parsing_model = Parsing(0)
94
+ openpose_model = OpenPose(0)
95
+
96
+ UNet_Encoder.requires_grad_(False)
97
+ image_encoder.requires_grad_(False)
98
+ vae.requires_grad_(False)
99
+ unet.requires_grad_(False)
100
+ text_encoder_one.requires_grad_(False)
101
+ text_encoder_two.requires_grad_(False)
102
+ tensor_transfrom = transforms.Compose(
103
+ [
104
+ transforms.ToTensor(),
105
+ transforms.Normalize([0.5], [0.5]),
106
+ ]
107
+ )
108
+
109
+ pipe = TryonPipeline.from_pretrained(
110
+ base_path,
111
+ unet=unet,
112
+ vae=vae,
113
+ feature_extractor= CLIPImageProcessor(),
114
+ text_encoder = text_encoder_one,
115
+ text_encoder_2 = text_encoder_two,
116
+ tokenizer = tokenizer_one,
117
+ tokenizer_2 = tokenizer_two,
118
+ scheduler = noise_scheduler,
119
+ image_encoder=image_encoder,
120
+ torch_dtype=torch.float16,
121
+ )
122
+ pipe.unet_encoder = UNet_Encoder
123
+
124
+ @spaces.GPU
125
+ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
126
+ device = "cuda"
127
+
128
+ openpose_model.preprocessor.body_estimation.model.to(device)
129
+ pipe.to(device)
130
+ pipe.unet_encoder.to(device)
131
+
132
+ garm_img= garm_img.convert("RGB").resize((768,1024))
133
+ human_img_orig = dict["background"].convert("RGB")
134
+
135
+ if is_checked_crop:
136
+ width, height = human_img_orig.size
137
+ target_width = int(min(width, height * (3 / 4)))
138
+ target_height = int(min(height, width * (4 / 3)))
139
+ left = (width - target_width) / 2
140
+ top = (height - target_height) / 2
141
+ right = (width + target_width) / 2
142
+ bottom = (height + target_height) / 2
143
+ cropped_img = human_img_orig.crop((left, top, right, bottom))
144
+ crop_size = cropped_img.size
145
+ human_img = cropped_img.resize((768,1024))
146
+ else:
147
+ human_img = human_img_orig.resize((768,1024))
148
+
149
+
150
+ if is_checked:
151
+ keypoints = openpose_model(human_img.resize((384,512)))
152
+ model_parse, _ = parsing_model(human_img.resize((384,512)))
153
+ mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
154
+ mask = mask.resize((768,1024))
155
+ else:
156
+ mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
157
+ # mask = transforms.ToTensor()(mask)
158
+ # mask = mask.unsqueeze(0)
159
+ mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
+ mask_gray = to_pil_image((mask_gray+1.0)/2.0)
161
+
162
+
163
+ human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
164
+ human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
165
+
166
+
167
+
168
+ args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
169
+ # verbosity = getattr(args, "verbosity", None)
170
+ pose_img = args.func(args,human_img_arg)
171
+ pose_img = pose_img[:,:,::-1]
172
+ pose_img = Image.fromarray(pose_img).resize((768,1024))
173
+
174
+ with torch.no_grad():
175
+ # Extract the images
176
+ with torch.cuda.amp.autocast():
177
+ with torch.no_grad():
178
+ prompt = "model is wearing " + garment_des
179
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
180
+ with torch.inference_mode():
181
+ (
182
+ prompt_embeds,
183
+ negative_prompt_embeds,
184
+ pooled_prompt_embeds,
185
+ negative_pooled_prompt_embeds,
186
+ ) = pipe.encode_prompt(
187
+ prompt,
188
+ num_images_per_prompt=1,
189
+ do_classifier_free_guidance=True,
190
+ negative_prompt=negative_prompt,
191
+ )
192
+
193
+ prompt = "a photo of " + garment_des
194
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
195
+ if not isinstance(prompt, List):
196
+ prompt = [prompt] * 1
197
+ if not isinstance(negative_prompt, List):
198
+ negative_prompt = [negative_prompt] * 1
199
+ with torch.inference_mode():
200
+ (
201
+ prompt_embeds_c,
202
+ _,
203
+ _,
204
+ _,
205
+ ) = pipe.encode_prompt(
206
+ prompt,
207
+ num_images_per_prompt=1,
208
+ do_classifier_free_guidance=False,
209
+ negative_prompt=negative_prompt,
210
+ )
211
+
212
+
213
+
214
+ pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
215
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
216
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
217
+ images = pipe(
218
+ prompt_embeds=prompt_embeds.to(device,torch.float16),
219
+ negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
220
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
221
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
222
+ num_inference_steps=denoise_steps,
223
+ generator=generator,
224
+ strength = 1.0,
225
+ pose_img = pose_img.to(device,torch.float16),
226
+ text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
227
+ cloth = garm_tensor.to(device,torch.float16),
228
+ mask_image=mask,
229
+ image=human_img,
230
+ height=1024,
231
+ width=768,
232
+ ip_adapter_image = garm_img.resize((768,1024)),
233
+ guidance_scale=2.0,
234
+ )[0]
235
+
236
+ if is_checked_crop:
237
+ out_img = images[0].resize(crop_size)
238
+ human_img_orig.paste(out_img, (int(left), int(top)))
239
+ return human_img_orig, mask_gray
240
+ else:
241
+ return images[0], mask_gray
242
+ # return images[0], mask_gray
243
+
244
+ garm_list = os.listdir(os.path.join(example_path,"cloth"))
245
+ garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
246
+
247
+ human_list = os.listdir(os.path.join(example_path,"human"))
248
+ human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
249
+
250
+ human_ex_list = []
251
+ for ex_human in human_list_path:
252
+ ex_dict= {}
253
+ ex_dict['background'] = ex_human
254
+ ex_dict['layers'] = None
255
+ ex_dict['composite'] = None
256
+ human_ex_list.append(ex_dict)
257
+
258
+ ##default human
259
+
260
+
261
+ image_blocks = gr.Blocks().queue()
262
+ with image_blocks as demo:
263
+ gr.Markdown("## IDM-VTON πŸ‘•πŸ‘”πŸ‘š")
264
+ gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
265
+ with gr.Row():
266
+ with gr.Column():
267
+ imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
268
+ with gr.Row():
269
+ is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
270
+ with gr.Row():
271
+ is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
272
+
273
+ example = gr.Examples(
274
+ inputs=imgs,
275
+ examples_per_page=10,
276
+ examples=human_ex_list
277
+ )
278
+
279
+ with gr.Column():
280
+ garm_img = gr.Image(label="Garment", sources='upload', type="pil")
281
+ with gr.Row(elem_id="prompt-container"):
282
+ with gr.Row():
283
+ prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
284
+ example = gr.Examples(
285
+ inputs=garm_img,
286
+ examples_per_page=8,
287
+ examples=garm_list_path)
288
+ with gr.Column():
289
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
290
+ masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
291
+ with gr.Column():
292
+ # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
293
+ image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
294
+
295
+
296
+
297
+
298
+ with gr.Column():
299
+ try_button = gr.Button(value="Try-on")
300
+ with gr.Accordion(label="Advanced Settings", open=False):
301
+ with gr.Row():
302
+ denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
303
+ seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
304
+
305
+
306
+
307
+ try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
308
+
309
+
310
+
311
+
312
+ image_blocks.launch()
313
+