|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Tuple, Union |
|
|
|
import flax |
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
from flax.core.frozen_dict import FrozenDict |
|
|
|
from ..configuration_utils import ConfigMixin, flax_register_to_config |
|
from ..utils import BaseOutput |
|
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps |
|
from .modeling_flax_utils import FlaxModelMixin |
|
from .unet_2d_blocks_flax import ( |
|
FlaxCrossAttnDownBlock2D, |
|
FlaxCrossAttnUpBlock2D, |
|
FlaxDownBlock2D, |
|
FlaxUNetMidBlock2DCrossAttn, |
|
FlaxUpBlock2D, |
|
) |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxUNet2DConditionOutput(BaseOutput): |
|
""" |
|
Args: |
|
sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`): |
|
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. |
|
""" |
|
|
|
sample: jnp.ndarray |
|
|
|
|
|
@flax_register_to_config |
|
class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin): |
|
r""" |
|
FlaxUNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a |
|
timestep and returns sample shaped output. |
|
|
|
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the models (such as downloading or saving, etc.) |
|
|
|
Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) |
|
subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to |
|
general usage and behavior. |
|
|
|
Finally, this model supports inherent JAX features such as: |
|
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) |
|
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) |
|
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) |
|
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) |
|
|
|
Parameters: |
|
sample_size (`int`, *optional*): |
|
The size of the input sample. |
|
in_channels (`int`, *optional*, defaults to 4): |
|
The number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 4): |
|
The number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): |
|
The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D", |
|
"FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D" |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): |
|
The tuple of upsample blocks to use. The corresponding class names will be: "FlaxUpBlock2D", |
|
"FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D" |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): |
|
The number of layers per block. |
|
attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8): |
|
The dimension of the attention heads. |
|
cross_attention_dim (`int`, *optional*, defaults to 768): |
|
The dimension of the cross attention features. |
|
dropout (`float`, *optional*, defaults to 0): |
|
Dropout probability for down, up and bottleneck blocks. |
|
flip_sin_to_cos (`bool`, *optional*, defaults to `True`): |
|
Whether to flip the sin to cos in the time embedding. |
|
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. |
|
|
|
""" |
|
|
|
sample_size: int = 32 |
|
in_channels: int = 4 |
|
out_channels: int = 4 |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
) |
|
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") |
|
only_cross_attention: Union[bool, Tuple[bool]] = False |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280) |
|
layers_per_block: int = 2 |
|
attention_head_dim: Union[int, Tuple[int]] = 8 |
|
cross_attention_dim: int = 1280 |
|
dropout: float = 0.0 |
|
use_linear_projection: bool = False |
|
dtype: jnp.dtype = jnp.float32 |
|
flip_sin_to_cos: bool = True |
|
freq_shift: int = 0 |
|
|
|
def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict: |
|
|
|
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) |
|
sample = jnp.zeros(sample_shape, dtype=jnp.float32) |
|
timesteps = jnp.ones((1,), dtype=jnp.int32) |
|
encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32) |
|
|
|
params_rng, dropout_rng = jax.random.split(rng) |
|
rngs = {"params": params_rng, "dropout": dropout_rng} |
|
|
|
return self.init(rngs, sample, timesteps, encoder_hidden_states)["params"] |
|
|
|
def setup(self): |
|
block_out_channels = self.block_out_channels |
|
time_embed_dim = block_out_channels[0] * 4 |
|
|
|
|
|
self.conv_in = nn.Conv( |
|
block_out_channels[0], |
|
kernel_size=(3, 3), |
|
strides=(1, 1), |
|
padding=((1, 1), (1, 1)), |
|
dtype=self.dtype, |
|
) |
|
|
|
|
|
self.time_proj = FlaxTimesteps( |
|
block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift |
|
) |
|
self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) |
|
|
|
only_cross_attention = self.only_cross_attention |
|
if isinstance(only_cross_attention, bool): |
|
only_cross_attention = (only_cross_attention,) * len(self.down_block_types) |
|
|
|
attention_head_dim = self.attention_head_dim |
|
if isinstance(attention_head_dim, int): |
|
attention_head_dim = (attention_head_dim,) * len(self.down_block_types) |
|
|
|
|
|
down_blocks = [] |
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(self.down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
if down_block_type == "CrossAttnDownBlock2D": |
|
down_block = FlaxCrossAttnDownBlock2D( |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
dropout=self.dropout, |
|
num_layers=self.layers_per_block, |
|
attn_num_head_channels=attention_head_dim[i], |
|
add_downsample=not is_final_block, |
|
use_linear_projection=self.use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
dtype=self.dtype, |
|
) |
|
else: |
|
down_block = FlaxDownBlock2D( |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
dropout=self.dropout, |
|
num_layers=self.layers_per_block, |
|
add_downsample=not is_final_block, |
|
dtype=self.dtype, |
|
) |
|
|
|
down_blocks.append(down_block) |
|
self.down_blocks = down_blocks |
|
|
|
|
|
self.mid_block = FlaxUNetMidBlock2DCrossAttn( |
|
in_channels=block_out_channels[-1], |
|
dropout=self.dropout, |
|
attn_num_head_channels=attention_head_dim[-1], |
|
use_linear_projection=self.use_linear_projection, |
|
dtype=self.dtype, |
|
) |
|
|
|
|
|
up_blocks = [] |
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_attention_head_dim = list(reversed(attention_head_dim)) |
|
only_cross_attention = list(reversed(only_cross_attention)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(self.up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
if up_block_type == "CrossAttnUpBlock2D": |
|
up_block = FlaxCrossAttnUpBlock2D( |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
num_layers=self.layers_per_block + 1, |
|
attn_num_head_channels=reversed_attention_head_dim[i], |
|
add_upsample=not is_final_block, |
|
dropout=self.dropout, |
|
use_linear_projection=self.use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
dtype=self.dtype, |
|
) |
|
else: |
|
up_block = FlaxUpBlock2D( |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
num_layers=self.layers_per_block + 1, |
|
add_upsample=not is_final_block, |
|
dropout=self.dropout, |
|
dtype=self.dtype, |
|
) |
|
|
|
up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
self.up_blocks = up_blocks |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5) |
|
self.conv_out = nn.Conv( |
|
self.out_channels, |
|
kernel_size=(3, 3), |
|
strides=(1, 1), |
|
padding=((1, 1), (1, 1)), |
|
dtype=self.dtype, |
|
) |
|
|
|
def __call__( |
|
self, |
|
sample, |
|
timesteps, |
|
encoder_hidden_states, |
|
return_dict: bool = True, |
|
train: bool = False, |
|
) -> Union[FlaxUNet2DConditionOutput, Tuple]: |
|
r""" |
|
Args: |
|
sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor |
|
timestep (`jnp.ndarray` or `float` or `int`): timesteps |
|
encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a |
|
plain tuple. |
|
train (`bool`, *optional*, defaults to `False`): |
|
Use deterministic functions and disable dropout when not training. |
|
|
|
Returns: |
|
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`: |
|
[`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. |
|
When returning a tuple, the first element is the sample tensor. |
|
""" |
|
|
|
if not isinstance(timesteps, jnp.ndarray): |
|
timesteps = jnp.array([timesteps], dtype=jnp.int32) |
|
elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: |
|
timesteps = timesteps.astype(dtype=jnp.float32) |
|
timesteps = jnp.expand_dims(timesteps, 0) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
t_emb = self.time_embedding(t_emb) |
|
|
|
|
|
sample = jnp.transpose(sample, (0, 2, 3, 1)) |
|
sample = self.conv_in(sample) |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for down_block in self.down_blocks: |
|
if isinstance(down_block, FlaxCrossAttnDownBlock2D): |
|
sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train) |
|
else: |
|
sample, res_samples = down_block(sample, t_emb, deterministic=not train) |
|
down_block_res_samples += res_samples |
|
|
|
|
|
sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
res_samples = down_block_res_samples[-(self.layers_per_block + 1) :] |
|
down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)] |
|
if isinstance(up_block, FlaxCrossAttnUpBlock2D): |
|
sample = up_block( |
|
sample, |
|
temb=t_emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
res_hidden_states_tuple=res_samples, |
|
deterministic=not train, |
|
) |
|
else: |
|
sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = nn.silu(sample) |
|
sample = self.conv_out(sample) |
|
sample = jnp.transpose(sample, (0, 3, 1, 2)) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return FlaxUNet2DConditionOutput(sample=sample) |
|
|