|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import os |
|
from dataclasses import dataclass |
|
from enum import Enum |
|
from typing import Any, Dict, Optional, Union |
|
|
|
import torch |
|
|
|
from ..utils import BaseOutput |
|
|
|
|
|
SCHEDULER_CONFIG_NAME = "scheduler_config.json" |
|
|
|
|
|
|
|
|
|
|
|
|
|
class KarrasDiffusionSchedulers(Enum): |
|
DDIMScheduler = 1 |
|
DDPMScheduler = 2 |
|
PNDMScheduler = 3 |
|
LMSDiscreteScheduler = 4 |
|
EulerDiscreteScheduler = 5 |
|
HeunDiscreteScheduler = 6 |
|
EulerAncestralDiscreteScheduler = 7 |
|
DPMSolverMultistepScheduler = 8 |
|
DPMSolverSinglestepScheduler = 9 |
|
KDPM2DiscreteScheduler = 10 |
|
KDPM2AncestralDiscreteScheduler = 11 |
|
DEISMultistepScheduler = 12 |
|
UniPCMultistepScheduler = 13 |
|
|
|
|
|
@dataclass |
|
class SchedulerOutput(BaseOutput): |
|
""" |
|
Base class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
|
|
|
|
class SchedulerMixin: |
|
""" |
|
Mixin containing common functions for the schedulers. |
|
|
|
Class attributes: |
|
- **_compatibles** (`List[str]`) -- A list of classes that are compatible with the parent class, so that |
|
`from_config` can be used from a class different than the one used to save the config (should be overridden |
|
by parent class). |
|
""" |
|
|
|
config_name = SCHEDULER_CONFIG_NAME |
|
_compatibles = [] |
|
has_compatibles = True |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Dict[str, Any] = None, |
|
subfolder: Optional[str] = None, |
|
return_unused_kwargs=False, |
|
**kwargs, |
|
): |
|
r""" |
|
Instantiate a Scheduler class from a pre-defined JSON configuration file inside a directory or Hub repo. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an |
|
organization name, like `google/ddpm-celebahq-256`. |
|
- A path to a *directory* containing the schedluer configurations saved using |
|
[`~SchedulerMixin.save_pretrained`], e.g., `./my_model_directory/`. |
|
subfolder (`str`, *optional*): |
|
In case the relevant files are located inside a subfolder of the model repo (either remote in |
|
huggingface.co or downloaded locally), you can specify the folder name here. |
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
Whether kwargs that are not consumed by the Python class should be returned or not. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (i.e., do not try to download the model). |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `transformers-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
|
|
<Tip> |
|
|
|
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated |
|
models](https://huggingface.co/docs/hub/models-gated#gated-models). |
|
|
|
</Tip> |
|
|
|
<Tip> |
|
|
|
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to |
|
use this method in a firewalled environment. |
|
|
|
</Tip> |
|
|
|
""" |
|
config, kwargs = cls.load_config( |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
subfolder=subfolder, |
|
return_unused_kwargs=True, |
|
**kwargs, |
|
) |
|
return cls.from_config(config, return_unused_kwargs=return_unused_kwargs, **kwargs) |
|
|
|
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): |
|
""" |
|
Save a scheduler configuration object to the directory `save_directory`, so that it can be re-loaded using the |
|
[`~SchedulerMixin.from_pretrained`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the configuration JSON file will be saved (will be created if it does not exist). |
|
""" |
|
self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs) |
|
|
|
@property |
|
def compatibles(self): |
|
""" |
|
Returns all schedulers that are compatible with this scheduler |
|
|
|
Returns: |
|
`List[SchedulerMixin]`: List of compatible schedulers |
|
""" |
|
return self._get_compatibles() |
|
|
|
@classmethod |
|
def _get_compatibles(cls): |
|
compatible_classes_str = list(set([cls.__name__] + cls._compatibles)) |
|
diffusers_library = importlib.import_module(__name__.split(".")[0]) |
|
compatible_classes = [ |
|
getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c) |
|
] |
|
return compatible_classes |
|
|