|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from ..utils import deprecate, logging |
|
from ..utils.import_utils import is_xformers_available |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
r""" |
|
A cross attention layer. |
|
|
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias=False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
cross_attention_norm: bool = False, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
processor: Optional["AttnProcessor"] = None, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
self.cross_attention_norm = cross_attention_norm |
|
|
|
self.scale = dim_head**-0.5 |
|
|
|
self.heads = heads |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
|
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) |
|
else: |
|
self.group_norm = None |
|
|
|
if cross_attention_norm: |
|
self.norm_cross = nn.LayerNorm(cross_attention_dim) |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) |
|
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(nn.Linear(inner_dim, query_dim)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
|
|
|
|
|
|
if processor is None: |
|
processor = AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else CrossAttnProcessor() |
|
self.set_processor(processor) |
|
|
|
def set_use_memory_efficient_attention_xformers( |
|
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None |
|
): |
|
is_lora = hasattr(self, "processor") and isinstance( |
|
self.processor, (LoRACrossAttnProcessor, LoRAXFormersCrossAttnProcessor) |
|
) |
|
|
|
if use_memory_efficient_attention_xformers: |
|
if self.added_kv_proj_dim is not None: |
|
|
|
|
|
|
|
raise NotImplementedError( |
|
"Memory efficient attention with `xformers` is currently not supported when" |
|
" `self.added_kv_proj_dim` is defined." |
|
) |
|
elif not is_xformers_available(): |
|
raise ModuleNotFoundError( |
|
( |
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" |
|
" xformers" |
|
), |
|
name="xformers", |
|
) |
|
elif not torch.cuda.is_available(): |
|
raise ValueError( |
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" |
|
" only available for GPU " |
|
) |
|
else: |
|
try: |
|
|
|
_ = xformers.ops.memory_efficient_attention( |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
) |
|
except Exception as e: |
|
raise e |
|
|
|
if is_lora: |
|
processor = LoRAXFormersCrossAttnProcessor( |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
rank=self.processor.rank, |
|
attention_op=attention_op, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
processor.to(self.processor.to_q_lora.up.weight.device) |
|
else: |
|
processor = XFormersCrossAttnProcessor(attention_op=attention_op) |
|
else: |
|
if is_lora: |
|
processor = LoRACrossAttnProcessor( |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
rank=self.processor.rank, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
processor.to(self.processor.to_q_lora.up.weight.device) |
|
else: |
|
processor = CrossAttnProcessor() |
|
|
|
self.set_processor(processor) |
|
|
|
def set_attention_slice(self, slice_size): |
|
if slice_size is not None and slice_size > self.sliceable_head_dim: |
|
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") |
|
|
|
if slice_size is not None and self.added_kv_proj_dim is not None: |
|
processor = SlicedAttnAddedKVProcessor(slice_size) |
|
elif slice_size is not None: |
|
processor = SlicedAttnProcessor(slice_size) |
|
elif self.added_kv_proj_dim is not None: |
|
processor = CrossAttnAddedKVProcessor() |
|
else: |
|
processor = CrossAttnProcessor() |
|
|
|
self.set_processor(processor) |
|
|
|
def set_processor(self, processor: "AttnProcessor"): |
|
|
|
|
|
if ( |
|
hasattr(self, "processor") |
|
and isinstance(self.processor, torch.nn.Module) |
|
and not isinstance(processor, torch.nn.Module) |
|
): |
|
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") |
|
self._modules.pop("processor") |
|
|
|
self.processor = processor |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs): |
|
|
|
|
|
|
|
return self.processor( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
def batch_to_head_dim(self, tensor): |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def head_to_batch_dim(self, tensor): |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) |
|
return tensor |
|
|
|
def get_attention_scores(self, query, key, attention_mask=None): |
|
dtype = query.dtype |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
if attention_mask is None: |
|
baddbmm_input = torch.empty( |
|
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device |
|
) |
|
beta = 0 |
|
else: |
|
baddbmm_input = attention_mask |
|
beta = 1 |
|
|
|
attention_scores = torch.baddbmm( |
|
baddbmm_input, |
|
query, |
|
key.transpose(-1, -2), |
|
beta=beta, |
|
alpha=self.scale, |
|
) |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
attention_probs = attention_scores.softmax(dim=-1) |
|
attention_probs = attention_probs.to(dtype) |
|
|
|
return attention_probs |
|
|
|
def prepare_attention_mask(self, attention_mask, target_length, batch_size=None): |
|
if batch_size is None: |
|
deprecate( |
|
"batch_size=None", |
|
"0.0.15", |
|
message=( |
|
"Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect" |
|
" attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to" |
|
" `prepare_attention_mask` when preparing the attention_mask." |
|
), |
|
) |
|
batch_size = 1 |
|
|
|
head_size = self.heads |
|
if attention_mask is None: |
|
return attention_mask |
|
|
|
if attention_mask.shape[-1] != target_length: |
|
if attention_mask.device.type == "mps": |
|
|
|
|
|
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) |
|
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat([attention_mask, padding], dim=2) |
|
else: |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
|
|
if attention_mask.shape[0] < batch_size * head_size: |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) |
|
return attention_mask |
|
|
|
|
|
class CrossAttnProcessor: |
|
def __call__( |
|
self, |
|
attn: CrossAttention, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.cross_attention_norm: |
|
encoder_hidden_states = attn.norm_cross(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class LoRALinearLayer(nn.Module): |
|
def __init__(self, in_features, out_features, rank=4): |
|
super().__init__() |
|
|
|
if rank > min(in_features, out_features): |
|
raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}") |
|
|
|
self.down = nn.Linear(in_features, rank, bias=False) |
|
self.up = nn.Linear(rank, out_features, bias=False) |
|
|
|
nn.init.normal_(self.down.weight, std=1 / rank) |
|
nn.init.zeros_(self.up.weight) |
|
|
|
def forward(self, hidden_states): |
|
orig_dtype = hidden_states.dtype |
|
dtype = self.down.weight.dtype |
|
|
|
down_hidden_states = self.down(hidden_states.to(dtype)) |
|
up_hidden_states = self.up(down_hidden_states) |
|
|
|
return up_hidden_states.to(orig_dtype) |
|
|
|
|
|
class LoRACrossAttnProcessor(nn.Module): |
|
def __init__(self, hidden_size, cross_attention_dim=None, rank=4): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.rank = rank |
|
|
|
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank) |
|
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank) |
|
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank) |
|
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank) |
|
|
|
def __call__( |
|
self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0 |
|
): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) |
|
query = attn.head_to_batch_dim(query) |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
|
|
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states) |
|
|
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttnAddedKVProcessor: |
|
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
residual = hidden_states |
|
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
query = attn.head_to_batch_dim(query) |
|
|
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
class XFormersCrossAttnProcessor: |
|
def __init__(self, attention_op: Optional[Callable] = None): |
|
self.attention_op = attention_op |
|
|
|
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.cross_attention_norm: |
|
encoder_hidden_states = attn.norm_cross(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query).contiguous() |
|
key = attn.head_to_batch_dim(key).contiguous() |
|
value = attn.head_to_batch_dim(value).contiguous() |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
query, key, value, attn_bias=attention_mask, op=self.attention_op |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
return hidden_states |
|
|
|
|
|
class AttnProcessor2_0: |
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
batch_size, sequence_length, inner_dim = hidden_states.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.cross_attention_norm: |
|
encoder_hidden_states = attn.norm_cross(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
head_dim = inner_dim // attn.heads |
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
return hidden_states |
|
|
|
|
|
class LoRAXFormersCrossAttnProcessor(nn.Module): |
|
def __init__(self, hidden_size, cross_attention_dim, rank=4, attention_op: Optional[Callable] = None): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.rank = rank |
|
self.attention_op = attention_op |
|
|
|
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank) |
|
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank) |
|
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank) |
|
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank) |
|
|
|
def __call__( |
|
self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0 |
|
): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) |
|
query = attn.head_to_batch_dim(query).contiguous() |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
|
|
key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states) |
|
|
|
key = attn.head_to_batch_dim(key).contiguous() |
|
value = attn.head_to_batch_dim(value).contiguous() |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
query, key, value, attn_bias=attention_mask, op=self.attention_op |
|
) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class SlicedAttnProcessor: |
|
def __init__(self, slice_size): |
|
self.slice_size = slice_size |
|
|
|
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
query = attn.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = attn.head_to_batch_dim(query) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.cross_attention_norm: |
|
encoder_hidden_states = attn.norm_cross(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
batch_size_attention = query.shape[0] |
|
hidden_states = torch.zeros( |
|
(batch_size_attention, sequence_length, dim // attn.heads), device=query.device, dtype=query.dtype |
|
) |
|
|
|
for i in range(hidden_states.shape[0] // self.slice_size): |
|
start_idx = i * self.slice_size |
|
end_idx = (i + 1) * self.slice_size |
|
|
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
|
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class SlicedAttnAddedKVProcessor: |
|
def __init__(self, slice_size): |
|
self.slice_size = slice_size |
|
|
|
def __call__(self, attn: "CrossAttention", hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
residual = hidden_states |
|
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) |
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = attn.head_to_batch_dim(query) |
|
|
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) |
|
|
|
batch_size_attention = query.shape[0] |
|
hidden_states = torch.zeros( |
|
(batch_size_attention, sequence_length, dim // attn.heads), device=query.device, dtype=query.dtype |
|
) |
|
|
|
for i in range(hidden_states.shape[0] // self.slice_size): |
|
start_idx = i * self.slice_size |
|
end_idx = (i + 1) * self.slice_size |
|
|
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None |
|
|
|
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) |
|
|
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
AttnProcessor = Union[ |
|
CrossAttnProcessor, |
|
XFormersCrossAttnProcessor, |
|
SlicedAttnProcessor, |
|
CrossAttnAddedKVProcessor, |
|
SlicedAttnAddedKVProcessor, |
|
LoRACrossAttnProcessor, |
|
LoRAXFormersCrossAttnProcessor, |
|
] |
|
|