MKFMIKU commited on
Commit
4a4ed11
1 Parent(s): fa8844d

Upload 13 files

Browse files
guided_diffusion/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ """
2
+ Codebase for "Improved Denoising Diffusion Probabilistic Models".
3
+ """
guided_diffusion/dist_util.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Helpers for distributed training.
3
+ """
4
+
5
+ import io
6
+ import os
7
+ import socket
8
+
9
+ import blobfile as bf
10
+ from mpi4py import MPI
11
+ import torch as th
12
+ import torch.distributed as dist
13
+
14
+ # Change this to reflect your cluster layout.
15
+ # The GPU for a given rank is (rank % GPUS_PER_NODE).
16
+ GPUS_PER_NODE = 8
17
+
18
+ SETUP_RETRY_COUNT = 3
19
+
20
+
21
+ def setup_dist():
22
+ """
23
+ Setup a distributed process group.
24
+ """
25
+ if dist.is_initialized():
26
+ return
27
+ os.environ["CUDA_VISIBLE_DEVICES"] = f"{MPI.COMM_WORLD.Get_rank() % GPUS_PER_NODE}"
28
+
29
+ comm = MPI.COMM_WORLD
30
+ backend = "gloo" if not th.cuda.is_available() else "nccl"
31
+
32
+ if backend == "gloo":
33
+ hostname = "localhost"
34
+ else:
35
+ hostname = socket.gethostbyname(socket.getfqdn())
36
+ os.environ["MASTER_ADDR"] = comm.bcast(hostname, root=0)
37
+ os.environ["RANK"] = str(comm.rank)
38
+ os.environ["WORLD_SIZE"] = str(comm.size)
39
+
40
+ port = comm.bcast(_find_free_port(), root=0)
41
+ os.environ["MASTER_PORT"] = str(port)
42
+ dist.init_process_group(backend=backend, init_method="env://")
43
+
44
+
45
+ def dev():
46
+ """
47
+ Get the device to use for torch.distributed.
48
+ """
49
+ if th.cuda.is_available():
50
+ return th.device(f"cuda")
51
+ return th.device("cpu")
52
+
53
+
54
+ def load_state_dict(path, **kwargs):
55
+ """
56
+ Load a PyTorch file without redundant fetches across MPI ranks.
57
+ """
58
+ chunk_size = 2 ** 30 # MPI has a relatively small size limit
59
+ if MPI.COMM_WORLD.Get_rank() == 0:
60
+ with bf.BlobFile(path, "rb") as f:
61
+ data = f.read()
62
+ num_chunks = len(data) // chunk_size
63
+ if len(data) % chunk_size:
64
+ num_chunks += 1
65
+ MPI.COMM_WORLD.bcast(num_chunks)
66
+ for i in range(0, len(data), chunk_size):
67
+ MPI.COMM_WORLD.bcast(data[i : i + chunk_size])
68
+ else:
69
+ num_chunks = MPI.COMM_WORLD.bcast(None)
70
+ data = bytes()
71
+ for _ in range(num_chunks):
72
+ data += MPI.COMM_WORLD.bcast(None)
73
+
74
+ return th.load(io.BytesIO(data), **kwargs)
75
+
76
+
77
+ def sync_params(params):
78
+ """
79
+ Synchronize a sequence of Tensors across ranks from rank 0.
80
+ """
81
+ for p in params:
82
+ with th.no_grad():
83
+ dist.broadcast(p, 0)
84
+
85
+
86
+ def _find_free_port():
87
+ try:
88
+ s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
89
+ s.bind(("", 0))
90
+ s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
91
+ return s.getsockname()[1]
92
+ finally:
93
+ s.close()
guided_diffusion/fp16_util.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Helpers to train with 16-bit precision.
3
+ """
4
+
5
+ import numpy as np
6
+ import torch as th
7
+ import torch.nn as nn
8
+ from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
9
+
10
+ from . import logger
11
+
12
+ INITIAL_LOG_LOSS_SCALE = 20.0
13
+
14
+
15
+ def convert_module_to_f16(l):
16
+ """
17
+ Convert primitive modules to float16.
18
+ """
19
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
20
+ l.weight.data = l.weight.data.half()
21
+ if l.bias is not None:
22
+ l.bias.data = l.bias.data.half()
23
+
24
+
25
+ def convert_module_to_f32(l):
26
+ """
27
+ Convert primitive modules to float32, undoing convert_module_to_f16().
28
+ """
29
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
30
+ l.weight.data = l.weight.data.float()
31
+ if l.bias is not None:
32
+ l.bias.data = l.bias.data.float()
33
+
34
+
35
+ def make_master_params(param_groups_and_shapes):
36
+ """
37
+ Copy model parameters into a (differently-shaped) list of full-precision
38
+ parameters.
39
+ """
40
+ master_params = []
41
+ for param_group, shape in param_groups_and_shapes:
42
+ master_param = nn.Parameter(
43
+ _flatten_dense_tensors(
44
+ [param.detach().float() for (_, param) in param_group]
45
+ ).view(shape)
46
+ )
47
+ master_param.requires_grad = True
48
+ master_params.append(master_param)
49
+ return master_params
50
+
51
+
52
+ def model_grads_to_master_grads(param_groups_and_shapes, master_params):
53
+ """
54
+ Copy the gradients from the model parameters into the master parameters
55
+ from make_master_params().
56
+ """
57
+ for master_param, (param_group, shape) in zip(
58
+ master_params, param_groups_and_shapes
59
+ ):
60
+ master_param.grad = _flatten_dense_tensors(
61
+ [param_grad_or_zeros(param) for (_, param) in param_group]
62
+ ).view(shape)
63
+
64
+
65
+ def master_params_to_model_params(param_groups_and_shapes, master_params):
66
+ """
67
+ Copy the master parameter data back into the model parameters.
68
+ """
69
+ # Without copying to a list, if a generator is passed, this will
70
+ # silently not copy any parameters.
71
+ for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes):
72
+ for (_, param), unflat_master_param in zip(
73
+ param_group, unflatten_master_params(param_group, master_param.view(-1))
74
+ ):
75
+ param.detach().copy_(unflat_master_param)
76
+
77
+
78
+ def unflatten_master_params(param_group, master_param):
79
+ return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group])
80
+
81
+
82
+ def get_param_groups_and_shapes(named_model_params):
83
+ named_model_params = list(named_model_params)
84
+ scalar_vector_named_params = (
85
+ [(n, p) for (n, p) in named_model_params if p.ndim <= 1],
86
+ (-1),
87
+ )
88
+ matrix_named_params = (
89
+ [(n, p) for (n, p) in named_model_params if p.ndim > 1],
90
+ (1, -1),
91
+ )
92
+ return [scalar_vector_named_params, matrix_named_params]
93
+
94
+
95
+ def master_params_to_state_dict(
96
+ model, param_groups_and_shapes, master_params, use_fp16
97
+ ):
98
+ if use_fp16:
99
+ state_dict = model.state_dict()
100
+ for master_param, (param_group, _) in zip(
101
+ master_params, param_groups_and_shapes
102
+ ):
103
+ for (name, _), unflat_master_param in zip(
104
+ param_group, unflatten_master_params(param_group, master_param.view(-1))
105
+ ):
106
+ assert name in state_dict
107
+ state_dict[name] = unflat_master_param
108
+ else:
109
+ state_dict = model.state_dict()
110
+ for i, (name, _value) in enumerate(model.named_parameters()):
111
+ assert name in state_dict
112
+ state_dict[name] = master_params[i]
113
+ return state_dict
114
+
115
+
116
+ def state_dict_to_master_params(model, state_dict, use_fp16):
117
+ if use_fp16:
118
+ named_model_params = [
119
+ (name, state_dict[name]) for name, _ in model.named_parameters()
120
+ ]
121
+ param_groups_and_shapes = get_param_groups_and_shapes(named_model_params)
122
+ master_params = make_master_params(param_groups_and_shapes)
123
+ else:
124
+ master_params = [state_dict[name] for name, _ in model.named_parameters()]
125
+ return master_params
126
+
127
+
128
+ def zero_master_grads(master_params):
129
+ for param in master_params:
130
+ param.grad = None
131
+
132
+
133
+ def zero_grad(model_params):
134
+ for param in model_params:
135
+ # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group
136
+ if param.grad is not None:
137
+ param.grad.detach_()
138
+ param.grad.zero_()
139
+
140
+
141
+ def param_grad_or_zeros(param):
142
+ if param.grad is not None:
143
+ return param.grad.data.detach()
144
+ else:
145
+ return th.zeros_like(param)
146
+
147
+
148
+ class MixedPrecisionTrainer:
149
+ def __init__(
150
+ self,
151
+ *,
152
+ model,
153
+ use_fp16=False,
154
+ fp16_scale_growth=1e-3,
155
+ initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE,
156
+ ):
157
+ self.model = model
158
+ self.use_fp16 = use_fp16
159
+ self.fp16_scale_growth = fp16_scale_growth
160
+
161
+ self.model_params = list(self.model.parameters())
162
+ self.master_params = self.model_params
163
+ self.param_groups_and_shapes = None
164
+ self.lg_loss_scale = initial_lg_loss_scale
165
+
166
+ if self.use_fp16:
167
+ self.param_groups_and_shapes = get_param_groups_and_shapes(
168
+ self.model.named_parameters()
169
+ )
170
+ self.master_params = make_master_params(self.param_groups_and_shapes)
171
+ self.model.convert_to_fp16()
172
+
173
+ def zero_grad(self):
174
+ zero_grad(self.model_params)
175
+
176
+ def backward(self, loss: th.Tensor):
177
+ if self.use_fp16:
178
+ loss_scale = 2 ** self.lg_loss_scale
179
+ (loss * loss_scale).backward()
180
+ else:
181
+ loss.backward()
182
+
183
+ def optimize(self, opt: th.optim.Optimizer):
184
+ if self.use_fp16:
185
+ return self._optimize_fp16(opt)
186
+ else:
187
+ return self._optimize_normal(opt)
188
+
189
+ def _optimize_fp16(self, opt: th.optim.Optimizer):
190
+ logger.logkv_mean("lg_loss_scale", self.lg_loss_scale)
191
+ model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params)
192
+ grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale)
193
+ if check_overflow(grad_norm):
194
+ self.lg_loss_scale -= 1
195
+ logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
196
+ zero_master_grads(self.master_params)
197
+ return False
198
+
199
+ logger.logkv_mean("grad_norm", grad_norm)
200
+ logger.logkv_mean("param_norm", param_norm)
201
+
202
+ self.master_params[0].grad.mul_(1.0 / (2 ** self.lg_loss_scale))
203
+ opt.step()
204
+ zero_master_grads(self.master_params)
205
+ master_params_to_model_params(self.param_groups_and_shapes, self.master_params)
206
+ self.lg_loss_scale += self.fp16_scale_growth
207
+ return True
208
+
209
+ def _optimize_normal(self, opt: th.optim.Optimizer):
210
+ grad_norm, param_norm = self._compute_norms()
211
+ logger.logkv_mean("grad_norm", grad_norm)
212
+ logger.logkv_mean("param_norm", param_norm)
213
+ opt.step()
214
+ return True
215
+
216
+ def _compute_norms(self, grad_scale=1.0):
217
+ grad_norm = 0.0
218
+ param_norm = 0.0
219
+ for p in self.master_params:
220
+ with th.no_grad():
221
+ param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2
222
+ if p.grad is not None:
223
+ grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2
224
+ return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm)
225
+
226
+ def master_params_to_state_dict(self, master_params):
227
+ return master_params_to_state_dict(
228
+ self.model, self.param_groups_and_shapes, master_params, self.use_fp16
229
+ )
230
+
231
+ def state_dict_to_master_params(self, state_dict):
232
+ return state_dict_to_master_params(self.model, state_dict, self.use_fp16)
233
+
234
+
235
+ def check_overflow(value):
236
+ return (value == float("inf")) or (value == -float("inf")) or (value != value)
guided_diffusion/gaussian_diffusion.py ADDED
@@ -0,0 +1,919 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This code started out as a PyTorch port of Ho et al's diffusion models:
3
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
4
+
5
+ Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
6
+ """
7
+
8
+ import enum
9
+ import math
10
+
11
+ import numpy as np
12
+ import torch as th
13
+
14
+ from .nn import mean_flat
15
+ from .losses import normal_kl, discretized_gaussian_log_likelihood
16
+
17
+
18
+ def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
19
+ """
20
+ Get a pre-defined beta schedule for the given name.
21
+
22
+ The beta schedule library consists of beta schedules which remain similar
23
+ in the limit of num_diffusion_timesteps.
24
+ Beta schedules may be added, but should not be removed or changed once
25
+ they are committed to maintain backwards compatibility.
26
+ """
27
+ if schedule_name == "linear":
28
+ # Linear schedule from Ho et al, extended to work for any number of
29
+ # diffusion steps.
30
+ scale = 1000 / num_diffusion_timesteps
31
+ beta_start = scale * 0.0001
32
+ beta_end = scale * 0.02
33
+ return np.linspace(
34
+ beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
35
+ )
36
+ elif schedule_name == "cosine":
37
+ return betas_for_alpha_bar(
38
+ num_diffusion_timesteps,
39
+ lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
40
+ )
41
+ else:
42
+ raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
43
+
44
+
45
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
46
+ """
47
+ Create a beta schedule that discretizes the given alpha_t_bar function,
48
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
49
+
50
+ :param num_diffusion_timesteps: the number of betas to produce.
51
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
52
+ produces the cumulative product of (1-beta) up to that
53
+ part of the diffusion process.
54
+ :param max_beta: the maximum beta to use; use values lower than 1 to
55
+ prevent singularities.
56
+ """
57
+ betas = []
58
+ for i in range(num_diffusion_timesteps):
59
+ t1 = i / num_diffusion_timesteps
60
+ t2 = (i + 1) / num_diffusion_timesteps
61
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
62
+ return np.array(betas)
63
+
64
+
65
+ class ModelMeanType(enum.Enum):
66
+ """
67
+ Which type of output the model predicts.
68
+ """
69
+
70
+ PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
71
+ START_X = enum.auto() # the model predicts x_0
72
+ EPSILON = enum.auto() # the model predicts epsilon
73
+
74
+
75
+ class ModelVarType(enum.Enum):
76
+ """
77
+ What is used as the model's output variance.
78
+
79
+ The LEARNED_RANGE option has been added to allow the model to predict
80
+ values between FIXED_SMALL and FIXED_LARGE, making its job easier.
81
+ """
82
+
83
+ LEARNED = enum.auto()
84
+ FIXED_SMALL = enum.auto()
85
+ FIXED_LARGE = enum.auto()
86
+ LEARNED_RANGE = enum.auto()
87
+
88
+
89
+ class LossType(enum.Enum):
90
+ MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
91
+ RESCALED_MSE = (
92
+ enum.auto()
93
+ ) # use raw MSE loss (with RESCALED_KL when learning variances)
94
+ KL = enum.auto() # use the variational lower-bound
95
+ RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
96
+
97
+ def is_vb(self):
98
+ return self == LossType.KL or self == LossType.RESCALED_KL
99
+
100
+
101
+ class GaussianDiffusion:
102
+ """
103
+ Utilities for training and sampling diffusion models.
104
+
105
+ Ported directly from here, and then adapted over time to further experimentation.
106
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
107
+
108
+ :param betas: a 1-D numpy array of betas for each diffusion timestep,
109
+ starting at T and going to 1.
110
+ :param model_mean_type: a ModelMeanType determining what the model outputs.
111
+ :param model_var_type: a ModelVarType determining how variance is output.
112
+ :param loss_type: a LossType determining the loss function to use.
113
+ :param rescale_timesteps: if True, pass floating point timesteps into the
114
+ model so that they are always scaled like in the
115
+ original paper (0 to 1000).
116
+ """
117
+
118
+ def __init__(
119
+ self,
120
+ *,
121
+ betas,
122
+ model_mean_type,
123
+ model_var_type,
124
+ loss_type,
125
+ rescale_timesteps=False,
126
+ p2_gamma=0,
127
+ p2_k=1,
128
+ ):
129
+ self.model_mean_type = model_mean_type
130
+ self.model_var_type = model_var_type
131
+ self.loss_type = loss_type
132
+ self.rescale_timesteps = rescale_timesteps
133
+
134
+ # Use float64 for accuracy.
135
+ betas = np.array(betas, dtype=np.float64)
136
+ self.betas = betas
137
+ assert len(betas.shape) == 1, "betas must be 1-D"
138
+ assert (betas > 0).all() and (betas <= 1).all()
139
+
140
+ self.num_timesteps = int(betas.shape[0])
141
+
142
+ alphas = 1.0 - betas
143
+ self.alphas_cumprod = np.cumprod(alphas, axis=0)
144
+ self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
145
+ self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
146
+ assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
147
+
148
+ # calculations for diffusion q(x_t | x_{t-1}) and others
149
+ self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
150
+ self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
151
+ self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
152
+ self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
153
+ self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
154
+
155
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
156
+ self.posterior_variance = (
157
+ betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
158
+ )
159
+ # log calculation clipped because the posterior variance is 0 at the
160
+ # beginning of the diffusion chain.
161
+ self.posterior_log_variance_clipped = np.log(
162
+ np.append(self.posterior_variance[1], self.posterior_variance[1:])
163
+ )
164
+ self.posterior_mean_coef1 = (
165
+ betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
166
+ )
167
+ self.posterior_mean_coef2 = (
168
+ (1.0 - self.alphas_cumprod_prev)
169
+ * np.sqrt(alphas)
170
+ / (1.0 - self.alphas_cumprod)
171
+ )
172
+
173
+ # P2 weighting
174
+ self.p2_gamma = p2_gamma
175
+ self.p2_k = p2_k
176
+ self.snr = 1.0 / (1 - self.alphas_cumprod) - 1
177
+
178
+ def q_mean_variance(self, x_start, t):
179
+ """
180
+ Get the distribution q(x_t | x_0).
181
+
182
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
183
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
184
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
185
+ """
186
+ mean = (
187
+ _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
188
+ )
189
+ variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
190
+ log_variance = _extract_into_tensor(
191
+ self.log_one_minus_alphas_cumprod, t, x_start.shape
192
+ )
193
+ return mean, variance, log_variance
194
+
195
+ def q_sample(self, x_start, t, noise=None):
196
+ """
197
+ Diffuse the data for a given number of diffusion steps.
198
+
199
+ In other words, sample from q(x_t | x_0).
200
+
201
+ :param x_start: the initial data batch.
202
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
203
+ :param noise: if specified, the split-out normal noise.
204
+ :return: A noisy version of x_start.
205
+ """
206
+ if noise is None:
207
+ noise = th.randn_like(x_start)
208
+ assert noise.shape == x_start.shape
209
+ return (
210
+ _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
211
+ + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
212
+ * noise
213
+ )
214
+
215
+ def q_posterior_mean_variance(self, x_start, x_t, t):
216
+ """
217
+ Compute the mean and variance of the diffusion posterior:
218
+
219
+ q(x_{t-1} | x_t, x_0)
220
+
221
+ """
222
+ assert x_start.shape == x_t.shape
223
+ posterior_mean = (
224
+ _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
225
+ + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
226
+ )
227
+ posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
228
+ posterior_log_variance_clipped = _extract_into_tensor(
229
+ self.posterior_log_variance_clipped, t, x_t.shape
230
+ )
231
+ assert (
232
+ posterior_mean.shape[0]
233
+ == posterior_variance.shape[0]
234
+ == posterior_log_variance_clipped.shape[0]
235
+ == x_start.shape[0]
236
+ )
237
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
238
+
239
+ def p_mean_variance(
240
+ self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
241
+ ):
242
+ """
243
+ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
244
+ the initial x, x_0.
245
+
246
+ :param model: the model, which takes a signal and a batch of timesteps
247
+ as input.
248
+ :param x: the [N x C x ...] tensor at time t.
249
+ :param t: a 1-D Tensor of timesteps.
250
+ :param clip_denoised: if True, clip the denoised signal into [-1, 1].
251
+ :param denoised_fn: if not None, a function which applies to the
252
+ x_start prediction before it is used to sample. Applies before
253
+ clip_denoised.
254
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
255
+ pass to the model. This can be used for conditioning.
256
+ :return: a dict with the following keys:
257
+ - 'mean': the model mean output.
258
+ - 'variance': the model variance output.
259
+ - 'log_variance': the log of 'variance'.
260
+ - 'pred_xstart': the prediction for x_0.
261
+ """
262
+ if model_kwargs is None:
263
+ model_kwargs = {}
264
+
265
+ B, C = x.shape[:2]
266
+ assert t.shape == (B,)
267
+ model_output = model(x, self._scale_timesteps(t), **model_kwargs)
268
+
269
+ if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
270
+ assert model_output.shape == (B, C * 2, *x.shape[2:])
271
+ model_output, model_var_values = th.split(model_output, C, dim=1)
272
+ if self.model_var_type == ModelVarType.LEARNED:
273
+ model_log_variance = model_var_values
274
+ model_variance = th.exp(model_log_variance)
275
+ else:
276
+ min_log = _extract_into_tensor(
277
+ self.posterior_log_variance_clipped, t, x.shape
278
+ )
279
+ max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
280
+ # The model_var_values is [-1, 1] for [min_var, max_var].
281
+ frac = (model_var_values + 1) / 2
282
+ model_log_variance = frac * max_log + (1 - frac) * min_log
283
+ model_variance = th.exp(model_log_variance)
284
+ else:
285
+ model_variance, model_log_variance = {
286
+ # for fixedlarge, we set the initial (log-)variance like so
287
+ # to get a better decoder log likelihood.
288
+ ModelVarType.FIXED_LARGE: (
289
+ np.append(self.posterior_variance[1], self.betas[1:]),
290
+ np.log(np.append(self.posterior_variance[1], self.betas[1:])),
291
+ ),
292
+ ModelVarType.FIXED_SMALL: (
293
+ self.posterior_variance,
294
+ self.posterior_log_variance_clipped,
295
+ ),
296
+ }[self.model_var_type]
297
+ model_variance = _extract_into_tensor(model_variance, t, x.shape)
298
+ model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
299
+
300
+ def process_xstart(x):
301
+ if denoised_fn is not None:
302
+ x = denoised_fn(x)
303
+ if clip_denoised:
304
+ return x.clamp(-1, 1)
305
+ return x
306
+
307
+ if self.model_mean_type == ModelMeanType.PREVIOUS_X:
308
+ pred_xstart = process_xstart(
309
+ self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
310
+ )
311
+ model_mean = model_output
312
+ elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
313
+ if self.model_mean_type == ModelMeanType.START_X:
314
+ pred_xstart = process_xstart(model_output)
315
+ else:
316
+ pred_xstart = process_xstart(
317
+ self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
318
+ )
319
+ model_mean, _, _ = self.q_posterior_mean_variance(
320
+ x_start=pred_xstart, x_t=x, t=t
321
+ )
322
+ else:
323
+ raise NotImplementedError(self.model_mean_type)
324
+
325
+ assert (
326
+ model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
327
+ )
328
+ return {
329
+ "mean": model_mean,
330
+ "variance": model_variance,
331
+ "log_variance": model_log_variance,
332
+ "pred_xstart": pred_xstart,
333
+ }
334
+
335
+ def _predict_xstart_from_eps(self, x_t, t, eps):
336
+ assert x_t.shape == eps.shape
337
+ return (
338
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
339
+ - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
340
+ )
341
+
342
+ def _predict_xstart_from_xprev(self, x_t, t, xprev):
343
+ assert x_t.shape == xprev.shape
344
+ return ( # (xprev - coef2*x_t) / coef1
345
+ _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
346
+ - _extract_into_tensor(
347
+ self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
348
+ )
349
+ * x_t
350
+ )
351
+
352
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
353
+ return (
354
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
355
+ - pred_xstart
356
+ ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
357
+
358
+ def _scale_timesteps(self, t):
359
+ if self.rescale_timesteps:
360
+ return t.float() * (1000.0 / self.num_timesteps)
361
+ return t
362
+
363
+ def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
364
+ """
365
+ Compute the mean for the previous step, given a function cond_fn that
366
+ computes the gradient of a conditional log probability with respect to
367
+ x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
368
+ condition on y.
369
+
370
+ This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
371
+ """
372
+ gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs)
373
+ new_mean = (
374
+ p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
375
+ )
376
+ return new_mean
377
+
378
+ def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
379
+ """
380
+ Compute what the p_mean_variance output would have been, should the
381
+ model's score function be conditioned by cond_fn.
382
+
383
+ See condition_mean() for details on cond_fn.
384
+
385
+ Unlike condition_mean(), this instead uses the conditioning strategy
386
+ from Song et al (2020).
387
+ """
388
+ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
389
+
390
+ eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
391
+ eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
392
+ x, self._scale_timesteps(t), **model_kwargs
393
+ )
394
+
395
+ out = p_mean_var.copy()
396
+ out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
397
+ out["mean"], _, _ = self.q_posterior_mean_variance(
398
+ x_start=out["pred_xstart"], x_t=x, t=t
399
+ )
400
+ return out
401
+
402
+ def p_sample(
403
+ self,
404
+ model,
405
+ x,
406
+ t,
407
+ clip_denoised=True,
408
+ denoised_fn=None,
409
+ cond_fn=None,
410
+ model_kwargs=None,
411
+ ):
412
+ """
413
+ Sample x_{t-1} from the model at the given timestep.
414
+
415
+ :param model: the model to sample from.
416
+ :param x: the current tensor at x_{t-1}.
417
+ :param t: the value of t, starting at 0 for the first diffusion step.
418
+ :param clip_denoised: if True, clip the x_start prediction to [-1, 1].
419
+ :param denoised_fn: if not None, a function which applies to the
420
+ x_start prediction before it is used to sample.
421
+ :param cond_fn: if not None, this is a gradient function that acts
422
+ similarly to the model.
423
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
424
+ pass to the model. This can be used for conditioning.
425
+ :return: a dict containing the following keys:
426
+ - 'sample': a random sample from the model.
427
+ - 'pred_xstart': a prediction of x_0.
428
+ """
429
+ out = self.p_mean_variance(
430
+ model,
431
+ x,
432
+ t,
433
+ clip_denoised=clip_denoised,
434
+ denoised_fn=denoised_fn,
435
+ model_kwargs=model_kwargs,
436
+ )
437
+ noise = th.randn_like(x)
438
+ nonzero_mask = (
439
+ (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
440
+ ) # no noise when t == 0
441
+ if cond_fn is not None:
442
+ out["mean"] = self.condition_mean(
443
+ cond_fn, out, x, t, model_kwargs=model_kwargs
444
+ )
445
+ sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
446
+ return {"sample": sample, "pred_xstart": out["pred_xstart"]}
447
+
448
+ def p_sample_loop(
449
+ self,
450
+ model,
451
+ shape,
452
+ noise=None,
453
+ clip_denoised=True,
454
+ denoised_fn=None,
455
+ cond_fn=None,
456
+ model_kwargs=None,
457
+ device=None,
458
+ progress=False,
459
+ ):
460
+ """
461
+ Generate samples from the model.
462
+
463
+ :param model: the model module.
464
+ :param shape: the shape of the samples, (N, C, H, W).
465
+ :param noise: if specified, the noise from the encoder to sample.
466
+ Should be of the same shape as `shape`.
467
+ :param clip_denoised: if True, clip x_start predictions to [-1, 1].
468
+ :param denoised_fn: if not None, a function which applies to the
469
+ x_start prediction before it is used to sample.
470
+ :param cond_fn: if not None, this is a gradient function that acts
471
+ similarly to the model.
472
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
473
+ pass to the model. This can be used for conditioning.
474
+ :param device: if specified, the device to create the samples on.
475
+ If not specified, use a model parameter's device.
476
+ :param progress: if True, show a tqdm progress bar.
477
+ :return: a non-differentiable batch of samples.
478
+ """
479
+ final = None
480
+ for sample in self.p_sample_loop_progressive(
481
+ model,
482
+ shape,
483
+ noise=noise,
484
+ clip_denoised=clip_denoised,
485
+ denoised_fn=denoised_fn,
486
+ cond_fn=cond_fn,
487
+ model_kwargs=model_kwargs,
488
+ device=device,
489
+ progress=progress,
490
+ ):
491
+ final = sample
492
+ return final["sample"]
493
+
494
+ def p_sample_loop_progressive(
495
+ self,
496
+ model,
497
+ shape,
498
+ noise=None,
499
+ clip_denoised=True,
500
+ denoised_fn=None,
501
+ cond_fn=None,
502
+ model_kwargs=None,
503
+ device=None,
504
+ progress=False,
505
+ ):
506
+ """
507
+ Generate samples from the model and yield intermediate samples from
508
+ each timestep of diffusion.
509
+
510
+ Arguments are the same as p_sample_loop().
511
+ Returns a generator over dicts, where each dict is the return value of
512
+ p_sample().
513
+ """
514
+ if device is None:
515
+ device = next(model.parameters()).device
516
+ assert isinstance(shape, (tuple, list))
517
+ if noise is not None:
518
+ img = noise
519
+ else:
520
+ img = th.randn(*shape, device=device)
521
+ indices = list(range(self.num_timesteps))[::-1]
522
+
523
+ if progress:
524
+ # Lazy import so that we don't depend on tqdm.
525
+ from tqdm.auto import tqdm
526
+
527
+ indices = tqdm(indices)
528
+
529
+ for i in indices:
530
+ t = th.tensor([i] * shape[0], device=device)
531
+ with th.no_grad():
532
+ out = self.p_sample(
533
+ model,
534
+ img,
535
+ t,
536
+ clip_denoised=clip_denoised,
537
+ denoised_fn=denoised_fn,
538
+ cond_fn=cond_fn,
539
+ model_kwargs=model_kwargs,
540
+ )
541
+ yield out
542
+ img = out["sample"]
543
+
544
+ def ddim_sample(
545
+ self,
546
+ model,
547
+ x,
548
+ t,
549
+ clip_denoised=True,
550
+ denoised_fn=None,
551
+ cond_fn=None,
552
+ model_kwargs=None,
553
+ eta=0.0,
554
+ ):
555
+ """
556
+ Sample x_{t-1} from the model using DDIM.
557
+
558
+ Same usage as p_sample().
559
+ """
560
+ out = self.p_mean_variance(
561
+ model,
562
+ x,
563
+ t,
564
+ clip_denoised=clip_denoised,
565
+ denoised_fn=denoised_fn,
566
+ model_kwargs=model_kwargs,
567
+ )
568
+ if cond_fn is not None:
569
+ out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
570
+
571
+ # Usually our model outputs epsilon, but we re-derive it
572
+ # in case we used x_start or x_prev prediction.
573
+ eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
574
+
575
+ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
576
+ alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
577
+ sigma = (
578
+ eta
579
+ * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
580
+ * th.sqrt(1 - alpha_bar / alpha_bar_prev)
581
+ )
582
+ # Equation 12.
583
+ noise = th.randn_like(x)
584
+ mean_pred = (
585
+ out["pred_xstart"] * th.sqrt(alpha_bar_prev)
586
+ + th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
587
+ )
588
+ nonzero_mask = (
589
+ (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
590
+ ) # no noise when t == 0
591
+ sample = mean_pred + nonzero_mask * sigma * noise
592
+ return {"sample": sample, "pred_xstart": out["pred_xstart"]}
593
+
594
+ def ddim_reverse_sample(
595
+ self,
596
+ model,
597
+ x,
598
+ t,
599
+ clip_denoised=True,
600
+ denoised_fn=None,
601
+ model_kwargs=None,
602
+ eta=0.0,
603
+ ):
604
+ """
605
+ Sample x_{t+1} from the model using DDIM reverse ODE.
606
+ """
607
+ assert eta == 0.0, "Reverse ODE only for deterministic path"
608
+ out = self.p_mean_variance(
609
+ model,
610
+ x,
611
+ t,
612
+ clip_denoised=clip_denoised,
613
+ denoised_fn=denoised_fn,
614
+ model_kwargs=model_kwargs,
615
+ )
616
+ # Usually our model outputs epsilon, but we re-derive it
617
+ # in case we used x_start or x_prev prediction.
618
+ eps = (
619
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
620
+ - out["pred_xstart"]
621
+ ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
622
+ alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
623
+
624
+ # Equation 12. reversed
625
+ mean_pred = (
626
+ out["pred_xstart"] * th.sqrt(alpha_bar_next)
627
+ + th.sqrt(1 - alpha_bar_next) * eps
628
+ )
629
+
630
+ return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
631
+
632
+ def ddim_sample_loop(
633
+ self,
634
+ model,
635
+ shape,
636
+ noise=None,
637
+ clip_denoised=True,
638
+ denoised_fn=None,
639
+ cond_fn=None,
640
+ model_kwargs=None,
641
+ device=None,
642
+ progress=False,
643
+ eta=0.0,
644
+ ):
645
+ """
646
+ Generate samples from the model using DDIM.
647
+
648
+ Same usage as p_sample_loop().
649
+ """
650
+ final = None
651
+ for sample in self.ddim_sample_loop_progressive(
652
+ model,
653
+ shape,
654
+ noise=noise,
655
+ clip_denoised=clip_denoised,
656
+ denoised_fn=denoised_fn,
657
+ cond_fn=cond_fn,
658
+ model_kwargs=model_kwargs,
659
+ device=device,
660
+ progress=progress,
661
+ eta=eta,
662
+ ):
663
+ final = sample
664
+ return final["sample"]
665
+
666
+ def ddim_sample_loop_progressive(
667
+ self,
668
+ model,
669
+ shape,
670
+ noise=None,
671
+ clip_denoised=True,
672
+ denoised_fn=None,
673
+ cond_fn=None,
674
+ model_kwargs=None,
675
+ device=None,
676
+ progress=False,
677
+ eta=0.0,
678
+ ):
679
+ """
680
+ Use DDIM to sample from the model and yield intermediate samples from
681
+ each timestep of DDIM.
682
+
683
+ Same usage as p_sample_loop_progressive().
684
+ """
685
+ if device is None:
686
+ device = next(model.parameters()).device
687
+ assert isinstance(shape, (tuple, list))
688
+ if noise is not None:
689
+ img = noise
690
+ else:
691
+ img = th.randn(*shape, device=device)
692
+ indices = list(range(self.num_timesteps))[::-1]
693
+
694
+ if progress:
695
+ # Lazy import so that we don't depend on tqdm.
696
+ from tqdm.auto import tqdm
697
+
698
+ indices = tqdm(indices)
699
+
700
+ for i in indices:
701
+ t = th.tensor([i] * shape[0], device=device)
702
+ with th.no_grad():
703
+ out = self.ddim_sample(
704
+ model,
705
+ img,
706
+ t,
707
+ clip_denoised=clip_denoised,
708
+ denoised_fn=denoised_fn,
709
+ cond_fn=cond_fn,
710
+ model_kwargs=model_kwargs,
711
+ eta=eta,
712
+ )
713
+ yield out
714
+ img = out["sample"]
715
+
716
+ def _vb_terms_bpd(
717
+ self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
718
+ ):
719
+ """
720
+ Get a term for the variational lower-bound.
721
+
722
+ The resulting units are bits (rather than nats, as one might expect).
723
+ This allows for comparison to other papers.
724
+
725
+ :return: a dict with the following keys:
726
+ - 'output': a shape [N] tensor of NLLs or KLs.
727
+ - 'pred_xstart': the x_0 predictions.
728
+ """
729
+ true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
730
+ x_start=x_start, x_t=x_t, t=t
731
+ )
732
+ out = self.p_mean_variance(
733
+ model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
734
+ )
735
+ kl = normal_kl(
736
+ true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
737
+ )
738
+ kl = mean_flat(kl) / np.log(2.0)
739
+
740
+ decoder_nll = -discretized_gaussian_log_likelihood(
741
+ x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
742
+ )
743
+ assert decoder_nll.shape == x_start.shape
744
+ decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
745
+
746
+ # At the first timestep return the decoder NLL,
747
+ # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
748
+ output = th.where((t == 0), decoder_nll, kl)
749
+ return {"output": output, "pred_xstart": out["pred_xstart"]}
750
+
751
+ def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
752
+ """
753
+ Compute training losses for a single timestep.
754
+
755
+ :param model: the model to evaluate loss on.
756
+ :param x_start: the [N x C x ...] tensor of inputs.
757
+ :param t: a batch of timestep indices.
758
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
759
+ pass to the model. This can be used for conditioning.
760
+ :param noise: if specified, the specific Gaussian noise to try to remove.
761
+ :return: a dict with the key "loss" containing a tensor of shape [N].
762
+ Some mean or variance settings may also have other keys.
763
+ """
764
+ if model_kwargs is None:
765
+ model_kwargs = {}
766
+ if noise is None:
767
+ noise = th.randn_like(x_start)
768
+ x_t = self.q_sample(x_start, t, noise=noise)
769
+
770
+ terms = {}
771
+
772
+ if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
773
+ terms["loss"] = self._vb_terms_bpd(
774
+ model=model,
775
+ x_start=x_start,
776
+ x_t=x_t,
777
+ t=t,
778
+ clip_denoised=False,
779
+ model_kwargs=model_kwargs,
780
+ )["output"]
781
+ if self.loss_type == LossType.RESCALED_KL:
782
+ terms["loss"] *= self.num_timesteps
783
+ elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
784
+ model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)
785
+
786
+ if self.model_var_type in [
787
+ ModelVarType.LEARNED,
788
+ ModelVarType.LEARNED_RANGE,
789
+ ]:
790
+ B, C = x_t.shape[:2]
791
+ assert model_output.shape == (B, C * 2, *x_t.shape[2:])
792
+ model_output, model_var_values = th.split(model_output, C, dim=1)
793
+ # Learn the variance using the variational bound, but don't let
794
+ # it affect our mean prediction.
795
+ frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
796
+ terms["vb"] = self._vb_terms_bpd(
797
+ model=lambda *args, r=frozen_out: r,
798
+ x_start=x_start,
799
+ x_t=x_t,
800
+ t=t,
801
+ clip_denoised=False,
802
+ )["output"]
803
+ if self.loss_type == LossType.RESCALED_MSE:
804
+ # Divide by 1000 for equivalence with initial implementation.
805
+ # Without a factor of 1/1000, the VB term hurts the MSE term.
806
+ terms["vb"] *= self.num_timesteps / 1000.0
807
+
808
+ target = {
809
+ ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
810
+ x_start=x_start, x_t=x_t, t=t
811
+ )[0],
812
+ ModelMeanType.START_X: x_start,
813
+ ModelMeanType.EPSILON: noise,
814
+ }[self.model_mean_type]
815
+ assert model_output.shape == target.shape == x_start.shape
816
+
817
+ # P2 weighting
818
+ weight = _extract_into_tensor(1 / (self.p2_k + self.snr)**self.p2_gamma, t, target.shape)
819
+ terms["mse"] = mean_flat(weight * (target - model_output) ** 2)
820
+
821
+ if "vb" in terms:
822
+ terms["loss"] = terms["mse"] + terms["vb"]
823
+ else:
824
+ terms["loss"] = terms["mse"]
825
+ else:
826
+ raise NotImplementedError(self.loss_type)
827
+
828
+ return terms
829
+
830
+ def _prior_bpd(self, x_start):
831
+ """
832
+ Get the prior KL term for the variational lower-bound, measured in
833
+ bits-per-dim.
834
+
835
+ This term can't be optimized, as it only depends on the encoder.
836
+
837
+ :param x_start: the [N x C x ...] tensor of inputs.
838
+ :return: a batch of [N] KL values (in bits), one per batch element.
839
+ """
840
+ batch_size = x_start.shape[0]
841
+ t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
842
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
843
+ kl_prior = normal_kl(
844
+ mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
845
+ )
846
+ return mean_flat(kl_prior) / np.log(2.0)
847
+
848
+ def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
849
+ """
850
+ Compute the entire variational lower-bound, measured in bits-per-dim,
851
+ as well as other related quantities.
852
+
853
+ :param model: the model to evaluate loss on.
854
+ :param x_start: the [N x C x ...] tensor of inputs.
855
+ :param clip_denoised: if True, clip denoised samples.
856
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
857
+ pass to the model. This can be used for conditioning.
858
+
859
+ :return: a dict containing the following keys:
860
+ - total_bpd: the total variational lower-bound, per batch element.
861
+ - prior_bpd: the prior term in the lower-bound.
862
+ - vb: an [N x T] tensor of terms in the lower-bound.
863
+ - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
864
+ - mse: an [N x T] tensor of epsilon MSEs for each timestep.
865
+ """
866
+ device = x_start.device
867
+ batch_size = x_start.shape[0]
868
+
869
+ vb = []
870
+ xstart_mse = []
871
+ mse = []
872
+ for t in list(range(self.num_timesteps))[::-1]:
873
+ t_batch = th.tensor([t] * batch_size, device=device)
874
+ noise = th.randn_like(x_start)
875
+ x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
876
+ # Calculate VLB term at the current timestep
877
+ with th.no_grad():
878
+ out = self._vb_terms_bpd(
879
+ model,
880
+ x_start=x_start,
881
+ x_t=x_t,
882
+ t=t_batch,
883
+ clip_denoised=clip_denoised,
884
+ model_kwargs=model_kwargs,
885
+ )
886
+ vb.append(out["output"])
887
+ xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
888
+ eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
889
+ mse.append(mean_flat((eps - noise) ** 2))
890
+
891
+ vb = th.stack(vb, dim=1)
892
+ xstart_mse = th.stack(xstart_mse, dim=1)
893
+ mse = th.stack(mse, dim=1)
894
+
895
+ prior_bpd = self._prior_bpd(x_start)
896
+ total_bpd = vb.sum(dim=1) + prior_bpd
897
+ return {
898
+ "total_bpd": total_bpd,
899
+ "prior_bpd": prior_bpd,
900
+ "vb": vb,
901
+ "xstart_mse": xstart_mse,
902
+ "mse": mse,
903
+ }
904
+
905
+
906
+ def _extract_into_tensor(arr, timesteps, broadcast_shape):
907
+ """
908
+ Extract values from a 1-D numpy array for a batch of indices.
909
+
910
+ :param arr: the 1-D numpy array.
911
+ :param timesteps: a tensor of indices into the array to extract.
912
+ :param broadcast_shape: a larger shape of K dimensions with the batch
913
+ dimension equal to the length of timesteps.
914
+ :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
915
+ """
916
+ res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
917
+ while len(res.shape) < len(broadcast_shape):
918
+ res = res[..., None]
919
+ return res.expand(broadcast_shape)
guided_diffusion/image_datasets.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+
4
+ from PIL import Image
5
+ import blobfile as bf
6
+ from mpi4py import MPI
7
+ import numpy as np
8
+ from torch.utils.data import DataLoader, Dataset
9
+
10
+
11
+ def load_data(
12
+ *,
13
+ data_dir,
14
+ batch_size,
15
+ image_size,
16
+ class_cond=False,
17
+ deterministic=False,
18
+ random_crop=False,
19
+ random_flip=True,
20
+ ):
21
+ """
22
+ For a dataset, create a generator over (images, kwargs) pairs.
23
+
24
+ Each images is an NCHW float tensor, and the kwargs dict contains zero or
25
+ more keys, each of which map to a batched Tensor of their own.
26
+ The kwargs dict can be used for class labels, in which case the key is "y"
27
+ and the values are integer tensors of class labels.
28
+
29
+ :param data_dir: a dataset directory.
30
+ :param batch_size: the batch size of each returned pair.
31
+ :param image_size: the size to which images are resized.
32
+ :param class_cond: if True, include a "y" key in returned dicts for class
33
+ label. If classes are not available and this is true, an
34
+ exception will be raised.
35
+ :param deterministic: if True, yield results in a deterministic order.
36
+ :param random_crop: if True, randomly crop the images for augmentation.
37
+ :param random_flip: if True, randomly flip the images for augmentation.
38
+ """
39
+ if not data_dir:
40
+ raise ValueError("unspecified data directory")
41
+ all_files = _list_image_files_recursively(data_dir)
42
+ classes = None
43
+ if class_cond:
44
+ # Assume classes are the first part of the filename,
45
+ # before an underscore.
46
+ class_names = [bf.basename(path).split("_")[0] for path in all_files]
47
+ sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))}
48
+ classes = [sorted_classes[x] for x in class_names]
49
+ dataset = ImageDataset(
50
+ image_size,
51
+ all_files,
52
+ classes=classes,
53
+ shard=MPI.COMM_WORLD.Get_rank(),
54
+ num_shards=MPI.COMM_WORLD.Get_size(),
55
+ random_crop=random_crop,
56
+ random_flip=random_flip,
57
+ )
58
+ if deterministic:
59
+ loader = DataLoader(
60
+ dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True
61
+ )
62
+ else:
63
+ loader = DataLoader(
64
+ dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True
65
+ )
66
+ while True:
67
+ yield from loader
68
+
69
+
70
+ def _list_image_files_recursively(data_dir):
71
+ results = []
72
+ for entry in sorted(bf.listdir(data_dir)):
73
+ full_path = bf.join(data_dir, entry)
74
+ ext = entry.split(".")[-1]
75
+ if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]:
76
+ results.append(full_path)
77
+ elif bf.isdir(full_path):
78
+ results.extend(_list_image_files_recursively(full_path))
79
+ return results
80
+
81
+
82
+ class ImageDataset(Dataset):
83
+ def __init__(
84
+ self,
85
+ resolution,
86
+ image_paths,
87
+ classes=None,
88
+ shard=0,
89
+ num_shards=1,
90
+ random_crop=False,
91
+ random_flip=True,
92
+ ):
93
+ super().__init__()
94
+ self.resolution = resolution
95
+ self.local_images = image_paths[shard:][::num_shards]
96
+ self.local_classes = None if classes is None else classes[shard:][::num_shards]
97
+ self.random_crop = random_crop
98
+ self.random_flip = random_flip
99
+
100
+ def __len__(self):
101
+ return len(self.local_images)
102
+
103
+ def __getitem__(self, idx):
104
+ path = self.local_images[idx]
105
+ with bf.BlobFile(path, "rb") as f:
106
+ pil_image = Image.open(f)
107
+ pil_image.load()
108
+ pil_image = pil_image.convert("RGB")
109
+
110
+ if self.random_crop:
111
+ arr = random_crop_arr(pil_image, self.resolution)
112
+ else:
113
+ arr = center_crop_arr(pil_image, self.resolution)
114
+
115
+ if self.random_flip and random.random() < 0.5:
116
+ arr = arr[:, ::-1]
117
+
118
+ arr = arr.astype(np.float32) / 127.5 - 1
119
+
120
+ out_dict = {}
121
+ if self.local_classes is not None:
122
+ out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
123
+ return np.transpose(arr, [2, 0, 1]), out_dict
124
+
125
+
126
+ def center_crop_arr(pil_image, image_size):
127
+ # We are not on a new enough PIL to support the `reducing_gap`
128
+ # argument, which uses BOX downsampling at powers of two first.
129
+ # Thus, we do it by hand to improve downsample quality.
130
+ while min(*pil_image.size) >= 2 * image_size:
131
+ pil_image = pil_image.resize(
132
+ tuple(x // 2 for x in pil_image.size), resample=Image.BOX
133
+ )
134
+
135
+ scale = image_size / min(*pil_image.size)
136
+ pil_image = pil_image.resize(
137
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
138
+ )
139
+
140
+ arr = np.array(pil_image)
141
+ crop_y = (arr.shape[0] - image_size) // 2
142
+ crop_x = (arr.shape[1] - image_size) // 2
143
+ return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
144
+
145
+
146
+ def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0):
147
+ min_smaller_dim_size = math.ceil(image_size / max_crop_frac)
148
+ max_smaller_dim_size = math.ceil(image_size / min_crop_frac)
149
+ smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1)
150
+
151
+ # We are not on a new enough PIL to support the `reducing_gap`
152
+ # argument, which uses BOX downsampling at powers of two first.
153
+ # Thus, we do it by hand to improve downsample quality.
154
+ while min(*pil_image.size) >= 2 * smaller_dim_size:
155
+ pil_image = pil_image.resize(
156
+ tuple(x // 2 for x in pil_image.size), resample=Image.BOX
157
+ )
158
+
159
+ scale = smaller_dim_size / min(*pil_image.size)
160
+ pil_image = pil_image.resize(
161
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
162
+ )
163
+
164
+ arr = np.array(pil_image)
165
+ crop_y = random.randrange(arr.shape[0] - image_size + 1)
166
+ crop_x = random.randrange(arr.shape[1] - image_size + 1)
167
+ return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
guided_diffusion/logger.py ADDED
@@ -0,0 +1,495 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Logger copied from OpenAI baselines to avoid extra RL-based dependencies:
3
+ https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py
4
+ """
5
+
6
+ import os
7
+ import sys
8
+ import shutil
9
+ import os.path as osp
10
+ import json
11
+ import time
12
+ import datetime
13
+ import tempfile
14
+ import warnings
15
+ from collections import defaultdict
16
+ from contextlib import contextmanager
17
+
18
+ DEBUG = 10
19
+ INFO = 20
20
+ WARN = 30
21
+ ERROR = 40
22
+
23
+ DISABLED = 50
24
+
25
+
26
+ class KVWriter(object):
27
+ def writekvs(self, kvs):
28
+ raise NotImplementedError
29
+
30
+
31
+ class SeqWriter(object):
32
+ def writeseq(self, seq):
33
+ raise NotImplementedError
34
+
35
+
36
+ class HumanOutputFormat(KVWriter, SeqWriter):
37
+ def __init__(self, filename_or_file):
38
+ if isinstance(filename_or_file, str):
39
+ self.file = open(filename_or_file, "wt")
40
+ self.own_file = True
41
+ else:
42
+ assert hasattr(filename_or_file, "read"), (
43
+ "expected file or str, got %s" % filename_or_file
44
+ )
45
+ self.file = filename_or_file
46
+ self.own_file = False
47
+
48
+ def writekvs(self, kvs):
49
+ # Create strings for printing
50
+ key2str = {}
51
+ for (key, val) in sorted(kvs.items()):
52
+ if hasattr(val, "__float__"):
53
+ valstr = "%-8.3g" % val
54
+ else:
55
+ valstr = str(val)
56
+ key2str[self._truncate(key)] = self._truncate(valstr)
57
+
58
+ # Find max widths
59
+ if len(key2str) == 0:
60
+ print("WARNING: tried to write empty key-value dict")
61
+ return
62
+ else:
63
+ keywidth = max(map(len, key2str.keys()))
64
+ valwidth = max(map(len, key2str.values()))
65
+
66
+ # Write out the data
67
+ dashes = "-" * (keywidth + valwidth + 7)
68
+ lines = [dashes]
69
+ for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()):
70
+ lines.append(
71
+ "| %s%s | %s%s |"
72
+ % (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val)))
73
+ )
74
+ lines.append(dashes)
75
+ self.file.write("\n".join(lines) + "\n")
76
+
77
+ # Flush the output to the file
78
+ self.file.flush()
79
+
80
+ def _truncate(self, s):
81
+ maxlen = 30
82
+ return s[: maxlen - 3] + "..." if len(s) > maxlen else s
83
+
84
+ def writeseq(self, seq):
85
+ seq = list(seq)
86
+ for (i, elem) in enumerate(seq):
87
+ self.file.write(elem)
88
+ if i < len(seq) - 1: # add space unless this is the last one
89
+ self.file.write(" ")
90
+ self.file.write("\n")
91
+ self.file.flush()
92
+
93
+ def close(self):
94
+ if self.own_file:
95
+ self.file.close()
96
+
97
+
98
+ class JSONOutputFormat(KVWriter):
99
+ def __init__(self, filename):
100
+ self.file = open(filename, "wt")
101
+
102
+ def writekvs(self, kvs):
103
+ for k, v in sorted(kvs.items()):
104
+ if hasattr(v, "dtype"):
105
+ kvs[k] = float(v)
106
+ self.file.write(json.dumps(kvs) + "\n")
107
+ self.file.flush()
108
+
109
+ def close(self):
110
+ self.file.close()
111
+
112
+
113
+ class CSVOutputFormat(KVWriter):
114
+ def __init__(self, filename):
115
+ self.file = open(filename, "w+t")
116
+ self.keys = []
117
+ self.sep = ","
118
+
119
+ def writekvs(self, kvs):
120
+ # Add our current row to the history
121
+ extra_keys = list(kvs.keys() - self.keys)
122
+ extra_keys.sort()
123
+ if extra_keys:
124
+ self.keys.extend(extra_keys)
125
+ self.file.seek(0)
126
+ lines = self.file.readlines()
127
+ self.file.seek(0)
128
+ for (i, k) in enumerate(self.keys):
129
+ if i > 0:
130
+ self.file.write(",")
131
+ self.file.write(k)
132
+ self.file.write("\n")
133
+ for line in lines[1:]:
134
+ self.file.write(line[:-1])
135
+ self.file.write(self.sep * len(extra_keys))
136
+ self.file.write("\n")
137
+ for (i, k) in enumerate(self.keys):
138
+ if i > 0:
139
+ self.file.write(",")
140
+ v = kvs.get(k)
141
+ if v is not None:
142
+ self.file.write(str(v))
143
+ self.file.write("\n")
144
+ self.file.flush()
145
+
146
+ def close(self):
147
+ self.file.close()
148
+
149
+
150
+ class TensorBoardOutputFormat(KVWriter):
151
+ """
152
+ Dumps key/value pairs into TensorBoard's numeric format.
153
+ """
154
+
155
+ def __init__(self, dir):
156
+ os.makedirs(dir, exist_ok=True)
157
+ self.dir = dir
158
+ self.step = 1
159
+ prefix = "events"
160
+ path = osp.join(osp.abspath(dir), prefix)
161
+ import tensorflow as tf
162
+ from tensorflow.python import pywrap_tensorflow
163
+ from tensorflow.core.util import event_pb2
164
+ from tensorflow.python.util import compat
165
+
166
+ self.tf = tf
167
+ self.event_pb2 = event_pb2
168
+ self.pywrap_tensorflow = pywrap_tensorflow
169
+ self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
170
+
171
+ def writekvs(self, kvs):
172
+ def summary_val(k, v):
173
+ kwargs = {"tag": k, "simple_value": float(v)}
174
+ return self.tf.Summary.Value(**kwargs)
175
+
176
+ summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()])
177
+ event = self.event_pb2.Event(wall_time=time.time(), summary=summary)
178
+ event.step = (
179
+ self.step
180
+ ) # is there any reason why you'd want to specify the step?
181
+ self.writer.WriteEvent(event)
182
+ self.writer.Flush()
183
+ self.step += 1
184
+
185
+ def close(self):
186
+ if self.writer:
187
+ self.writer.Close()
188
+ self.writer = None
189
+
190
+
191
+ def make_output_format(format, ev_dir, log_suffix=""):
192
+ os.makedirs(ev_dir, exist_ok=True)
193
+ if format == "stdout":
194
+ return HumanOutputFormat(sys.stdout)
195
+ elif format == "log":
196
+ return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix))
197
+ elif format == "json":
198
+ return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix))
199
+ elif format == "csv":
200
+ return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix))
201
+ elif format == "tensorboard":
202
+ return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix))
203
+ else:
204
+ raise ValueError("Unknown format specified: %s" % (format,))
205
+
206
+
207
+ # ================================================================
208
+ # API
209
+ # ================================================================
210
+
211
+
212
+ def logkv(key, val):
213
+ """
214
+ Log a value of some diagnostic
215
+ Call this once for each diagnostic quantity, each iteration
216
+ If called many times, last value will be used.
217
+ """
218
+ get_current().logkv(key, val)
219
+
220
+
221
+ def logkv_mean(key, val):
222
+ """
223
+ The same as logkv(), but if called many times, values averaged.
224
+ """
225
+ get_current().logkv_mean(key, val)
226
+
227
+
228
+ def logkvs(d):
229
+ """
230
+ Log a dictionary of key-value pairs
231
+ """
232
+ for (k, v) in d.items():
233
+ logkv(k, v)
234
+
235
+
236
+ def dumpkvs():
237
+ """
238
+ Write all of the diagnostics from the current iteration
239
+ """
240
+ return get_current().dumpkvs()
241
+
242
+
243
+ def getkvs():
244
+ return get_current().name2val
245
+
246
+
247
+ def log(*args, level=INFO):
248
+ """
249
+ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file).
250
+ """
251
+ get_current().log(*args, level=level)
252
+
253
+
254
+ def debug(*args):
255
+ log(*args, level=DEBUG)
256
+
257
+
258
+ def info(*args):
259
+ log(*args, level=INFO)
260
+
261
+
262
+ def warn(*args):
263
+ log(*args, level=WARN)
264
+
265
+
266
+ def error(*args):
267
+ log(*args, level=ERROR)
268
+
269
+
270
+ def set_level(level):
271
+ """
272
+ Set logging threshold on current logger.
273
+ """
274
+ get_current().set_level(level)
275
+
276
+
277
+ def set_comm(comm):
278
+ get_current().set_comm(comm)
279
+
280
+
281
+ def get_dir():
282
+ """
283
+ Get directory that log files are being written to.
284
+ will be None if there is no output directory (i.e., if you didn't call start)
285
+ """
286
+ return get_current().get_dir()
287
+
288
+
289
+ record_tabular = logkv
290
+ dump_tabular = dumpkvs
291
+
292
+
293
+ @contextmanager
294
+ def profile_kv(scopename):
295
+ logkey = "wait_" + scopename
296
+ tstart = time.time()
297
+ try:
298
+ yield
299
+ finally:
300
+ get_current().name2val[logkey] += time.time() - tstart
301
+
302
+
303
+ def profile(n):
304
+ """
305
+ Usage:
306
+ @profile("my_func")
307
+ def my_func(): code
308
+ """
309
+
310
+ def decorator_with_name(func):
311
+ def func_wrapper(*args, **kwargs):
312
+ with profile_kv(n):
313
+ return func(*args, **kwargs)
314
+
315
+ return func_wrapper
316
+
317
+ return decorator_with_name
318
+
319
+
320
+ # ================================================================
321
+ # Backend
322
+ # ================================================================
323
+
324
+
325
+ def get_current():
326
+ if Logger.CURRENT is None:
327
+ _configure_default_logger()
328
+
329
+ return Logger.CURRENT
330
+
331
+
332
+ class Logger(object):
333
+ DEFAULT = None # A logger with no output files. (See right below class definition)
334
+ # So that you can still log to the terminal without setting up any output files
335
+ CURRENT = None # Current logger being used by the free functions above
336
+
337
+ def __init__(self, dir, output_formats, comm=None):
338
+ self.name2val = defaultdict(float) # values this iteration
339
+ self.name2cnt = defaultdict(int)
340
+ self.level = INFO
341
+ self.dir = dir
342
+ self.output_formats = output_formats
343
+ self.comm = comm
344
+
345
+ # Logging API, forwarded
346
+ # ----------------------------------------
347
+ def logkv(self, key, val):
348
+ self.name2val[key] = val
349
+
350
+ def logkv_mean(self, key, val):
351
+ oldval, cnt = self.name2val[key], self.name2cnt[key]
352
+ self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1)
353
+ self.name2cnt[key] = cnt + 1
354
+
355
+ def dumpkvs(self):
356
+ if self.comm is None:
357
+ d = self.name2val
358
+ else:
359
+ d = mpi_weighted_mean(
360
+ self.comm,
361
+ {
362
+ name: (val, self.name2cnt.get(name, 1))
363
+ for (name, val) in self.name2val.items()
364
+ },
365
+ )
366
+ if self.comm.rank != 0:
367
+ d["dummy"] = 1 # so we don't get a warning about empty dict
368
+ out = d.copy() # Return the dict for unit testing purposes
369
+ for fmt in self.output_formats:
370
+ if isinstance(fmt, KVWriter):
371
+ fmt.writekvs(d)
372
+ self.name2val.clear()
373
+ self.name2cnt.clear()
374
+ return out
375
+
376
+ def log(self, *args, level=INFO):
377
+ if self.level <= level:
378
+ self._do_log(args)
379
+
380
+ # Configuration
381
+ # ----------------------------------------
382
+ def set_level(self, level):
383
+ self.level = level
384
+
385
+ def set_comm(self, comm):
386
+ self.comm = comm
387
+
388
+ def get_dir(self):
389
+ return self.dir
390
+
391
+ def close(self):
392
+ for fmt in self.output_formats:
393
+ fmt.close()
394
+
395
+ # Misc
396
+ # ----------------------------------------
397
+ def _do_log(self, args):
398
+ for fmt in self.output_formats:
399
+ if isinstance(fmt, SeqWriter):
400
+ fmt.writeseq(map(str, args))
401
+
402
+
403
+ def get_rank_without_mpi_import():
404
+ # check environment variables here instead of importing mpi4py
405
+ # to avoid calling MPI_Init() when this module is imported
406
+ for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]:
407
+ if varname in os.environ:
408
+ return int(os.environ[varname])
409
+ return 0
410
+
411
+
412
+ def mpi_weighted_mean(comm, local_name2valcount):
413
+ """
414
+ Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110
415
+ Perform a weighted average over dicts that are each on a different node
416
+ Input: local_name2valcount: dict mapping key -> (value, count)
417
+ Returns: key -> mean
418
+ """
419
+ all_name2valcount = comm.gather(local_name2valcount)
420
+ if comm.rank == 0:
421
+ name2sum = defaultdict(float)
422
+ name2count = defaultdict(float)
423
+ for n2vc in all_name2valcount:
424
+ for (name, (val, count)) in n2vc.items():
425
+ try:
426
+ val = float(val)
427
+ except ValueError:
428
+ if comm.rank == 0:
429
+ warnings.warn(
430
+ "WARNING: tried to compute mean on non-float {}={}".format(
431
+ name, val
432
+ )
433
+ )
434
+ else:
435
+ name2sum[name] += val * count
436
+ name2count[name] += count
437
+ return {name: name2sum[name] / name2count[name] for name in name2sum}
438
+ else:
439
+ return {}
440
+
441
+
442
+ def configure(dir=None, format_strs=None, comm=None, log_suffix=""):
443
+ """
444
+ If comm is provided, average all numerical stats across that comm
445
+ """
446
+ if dir is None:
447
+ dir = os.getenv("OPENAI_LOGDIR")
448
+ if dir is None:
449
+ dir = osp.join(
450
+ tempfile.gettempdir(),
451
+ datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"),
452
+ )
453
+ assert isinstance(dir, str)
454
+ dir = os.path.expanduser(dir)
455
+ os.makedirs(os.path.expanduser(dir), exist_ok=True)
456
+
457
+ rank = get_rank_without_mpi_import()
458
+ if rank > 0:
459
+ log_suffix = log_suffix + "-rank%03i" % rank
460
+
461
+ if format_strs is None:
462
+ if rank == 0:
463
+ format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",")
464
+ else:
465
+ format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",")
466
+ format_strs = filter(None, format_strs)
467
+ output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
468
+
469
+ Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm)
470
+ if output_formats:
471
+ log("Logging to %s" % dir)
472
+
473
+
474
+ def _configure_default_logger():
475
+ configure()
476
+ Logger.DEFAULT = Logger.CURRENT
477
+
478
+
479
+ def reset():
480
+ if Logger.CURRENT is not Logger.DEFAULT:
481
+ Logger.CURRENT.close()
482
+ Logger.CURRENT = Logger.DEFAULT
483
+ log("Reset logger")
484
+
485
+
486
+ @contextmanager
487
+ def scoped_configure(dir=None, format_strs=None, comm=None):
488
+ prevlogger = Logger.CURRENT
489
+ configure(dir=dir, format_strs=format_strs, comm=comm)
490
+ try:
491
+ yield
492
+ finally:
493
+ Logger.CURRENT.close()
494
+ Logger.CURRENT = prevlogger
495
+
guided_diffusion/losses.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Helpers for various likelihood-based losses. These are ported from the original
3
+ Ho et al. diffusion models codebase:
4
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py
5
+ """
6
+
7
+ import numpy as np
8
+
9
+ import torch as th
10
+
11
+
12
+ def normal_kl(mean1, logvar1, mean2, logvar2):
13
+ """
14
+ Compute the KL divergence between two gaussians.
15
+
16
+ Shapes are automatically broadcasted, so batches can be compared to
17
+ scalars, among other use cases.
18
+ """
19
+ tensor = None
20
+ for obj in (mean1, logvar1, mean2, logvar2):
21
+ if isinstance(obj, th.Tensor):
22
+ tensor = obj
23
+ break
24
+ assert tensor is not None, "at least one argument must be a Tensor"
25
+
26
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
27
+ # Tensors, but it does not work for th.exp().
28
+ logvar1, logvar2 = [
29
+ x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
30
+ for x in (logvar1, logvar2)
31
+ ]
32
+
33
+ return 0.5 * (
34
+ -1.0
35
+ + logvar2
36
+ - logvar1
37
+ + th.exp(logvar1 - logvar2)
38
+ + ((mean1 - mean2) ** 2) * th.exp(-logvar2)
39
+ )
40
+
41
+
42
+ def approx_standard_normal_cdf(x):
43
+ """
44
+ A fast approximation of the cumulative distribution function of the
45
+ standard normal.
46
+ """
47
+ return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
48
+
49
+
50
+ def discretized_gaussian_log_likelihood(x, *, means, log_scales):
51
+ """
52
+ Compute the log-likelihood of a Gaussian distribution discretizing to a
53
+ given image.
54
+
55
+ :param x: the target images. It is assumed that this was uint8 values,
56
+ rescaled to the range [-1, 1].
57
+ :param means: the Gaussian mean Tensor.
58
+ :param log_scales: the Gaussian log stddev Tensor.
59
+ :return: a tensor like x of log probabilities (in nats).
60
+ """
61
+ assert x.shape == means.shape == log_scales.shape
62
+ centered_x = x - means
63
+ inv_stdv = th.exp(-log_scales)
64
+ plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
65
+ cdf_plus = approx_standard_normal_cdf(plus_in)
66
+ min_in = inv_stdv * (centered_x - 1.0 / 255.0)
67
+ cdf_min = approx_standard_normal_cdf(min_in)
68
+ log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
69
+ log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
70
+ cdf_delta = cdf_plus - cdf_min
71
+ log_probs = th.where(
72
+ x < -0.999,
73
+ log_cdf_plus,
74
+ th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
75
+ )
76
+ assert log_probs.shape == x.shape
77
+ return log_probs
guided_diffusion/nn.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Various utilities for neural networks.
3
+ """
4
+
5
+ import math
6
+
7
+ import torch as th
8
+ import torch.nn as nn
9
+
10
+
11
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
12
+ class SiLU(nn.Module):
13
+ def forward(self, x):
14
+ return x * th.sigmoid(x)
15
+
16
+
17
+ class GroupNorm32(nn.GroupNorm):
18
+ def forward(self, x):
19
+ return super().forward(x.float()).type(x.dtype)
20
+
21
+
22
+ def conv_nd(dims, *args, **kwargs):
23
+ """
24
+ Create a 1D, 2D, or 3D convolution module.
25
+ """
26
+ if dims == 1:
27
+ return nn.Conv1d(*args, **kwargs)
28
+ elif dims == 2:
29
+ return nn.Conv2d(*args, **kwargs)
30
+ elif dims == 3:
31
+ return nn.Conv3d(*args, **kwargs)
32
+ raise ValueError(f"unsupported dimensions: {dims}")
33
+
34
+
35
+ def linear(*args, **kwargs):
36
+ """
37
+ Create a linear module.
38
+ """
39
+ return nn.Linear(*args, **kwargs)
40
+
41
+
42
+ def avg_pool_nd(dims, *args, **kwargs):
43
+ """
44
+ Create a 1D, 2D, or 3D average pooling module.
45
+ """
46
+ if dims == 1:
47
+ return nn.AvgPool1d(*args, **kwargs)
48
+ elif dims == 2:
49
+ return nn.AvgPool2d(*args, **kwargs)
50
+ elif dims == 3:
51
+ return nn.AvgPool3d(*args, **kwargs)
52
+ raise ValueError(f"unsupported dimensions: {dims}")
53
+
54
+
55
+ def update_ema(target_params, source_params, rate=0.99):
56
+ """
57
+ Update target parameters to be closer to those of source parameters using
58
+ an exponential moving average.
59
+
60
+ :param target_params: the target parameter sequence.
61
+ :param source_params: the source parameter sequence.
62
+ :param rate: the EMA rate (closer to 1 means slower).
63
+ """
64
+ for targ, src in zip(target_params, source_params):
65
+ targ.detach().mul_(rate).add_(src, alpha=1 - rate)
66
+
67
+
68
+ def zero_module(module):
69
+ """
70
+ Zero out the parameters of a module and return it.
71
+ """
72
+ for p in module.parameters():
73
+ p.detach().zero_()
74
+ return module
75
+
76
+
77
+ def scale_module(module, scale):
78
+ """
79
+ Scale the parameters of a module and return it.
80
+ """
81
+ for p in module.parameters():
82
+ p.detach().mul_(scale)
83
+ return module
84
+
85
+
86
+ def mean_flat(tensor):
87
+ """
88
+ Take the mean over all non-batch dimensions.
89
+ """
90
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
91
+
92
+
93
+ def normalization(channels):
94
+ """
95
+ Make a standard normalization layer.
96
+
97
+ :param channels: number of input channels.
98
+ :return: an nn.Module for normalization.
99
+ """
100
+ return GroupNorm32(32, channels)
101
+
102
+
103
+ def timestep_embedding(timesteps, dim, max_period=10000):
104
+ """
105
+ Create sinusoidal timestep embeddings.
106
+
107
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
108
+ These may be fractional.
109
+ :param dim: the dimension of the output.
110
+ :param max_period: controls the minimum frequency of the embeddings.
111
+ :return: an [N x dim] Tensor of positional embeddings.
112
+ """
113
+ half = dim // 2
114
+ freqs = th.exp(
115
+ -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
116
+ ).to(device=timesteps.device)
117
+ args = timesteps[:, None].float() * freqs[None]
118
+ embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
119
+ if dim % 2:
120
+ embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
121
+ return embedding
122
+
123
+
124
+ def checkpoint(func, inputs, params, flag):
125
+ """
126
+ Evaluate a function without caching intermediate activations, allowing for
127
+ reduced memory at the expense of extra compute in the backward pass.
128
+
129
+ :param func: the function to evaluate.
130
+ :param inputs: the argument sequence to pass to `func`.
131
+ :param params: a sequence of parameters `func` depends on but does not
132
+ explicitly take as arguments.
133
+ :param flag: if False, disable gradient checkpointing.
134
+ """
135
+ if flag:
136
+ args = tuple(inputs) + tuple(params)
137
+ return CheckpointFunction.apply(func, len(inputs), *args)
138
+ else:
139
+ return func(*inputs)
140
+
141
+
142
+ class CheckpointFunction(th.autograd.Function):
143
+ @staticmethod
144
+ def forward(ctx, run_function, length, *args):
145
+ ctx.run_function = run_function
146
+ ctx.input_tensors = list(args[:length])
147
+ ctx.input_params = list(args[length:])
148
+ with th.no_grad():
149
+ output_tensors = ctx.run_function(*ctx.input_tensors)
150
+ return output_tensors
151
+
152
+ @staticmethod
153
+ def backward(ctx, *output_grads):
154
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
155
+ with th.enable_grad():
156
+ # Fixes a bug where the first op in run_function modifies the
157
+ # Tensor storage in place, which is not allowed for detach()'d
158
+ # Tensors.
159
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
160
+ output_tensors = ctx.run_function(*shallow_copies)
161
+ input_grads = th.autograd.grad(
162
+ output_tensors,
163
+ ctx.input_tensors + ctx.input_params,
164
+ output_grads,
165
+ allow_unused=True,
166
+ )
167
+ del ctx.input_tensors
168
+ del ctx.input_params
169
+ del output_tensors
170
+ return (None, None) + input_grads
guided_diffusion/resample.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+
3
+ import numpy as np
4
+ import torch as th
5
+ import torch.distributed as dist
6
+
7
+
8
+ def create_named_schedule_sampler(name, diffusion):
9
+ """
10
+ Create a ScheduleSampler from a library of pre-defined samplers.
11
+
12
+ :param name: the name of the sampler.
13
+ :param diffusion: the diffusion object to sample for.
14
+ """
15
+ if name == "uniform":
16
+ return UniformSampler(diffusion)
17
+ elif name == "loss-second-moment":
18
+ return LossSecondMomentResampler(diffusion)
19
+ else:
20
+ raise NotImplementedError(f"unknown schedule sampler: {name}")
21
+
22
+
23
+ class ScheduleSampler(ABC):
24
+ """
25
+ A distribution over timesteps in the diffusion process, intended to reduce
26
+ variance of the objective.
27
+
28
+ By default, samplers perform unbiased importance sampling, in which the
29
+ objective's mean is unchanged.
30
+ However, subclasses may override sample() to change how the resampled
31
+ terms are reweighted, allowing for actual changes in the objective.
32
+ """
33
+
34
+ @abstractmethod
35
+ def weights(self):
36
+ """
37
+ Get a numpy array of weights, one per diffusion step.
38
+
39
+ The weights needn't be normalized, but must be positive.
40
+ """
41
+
42
+ def sample(self, batch_size, device):
43
+ """
44
+ Importance-sample timesteps for a batch.
45
+
46
+ :param batch_size: the number of timesteps.
47
+ :param device: the torch device to save to.
48
+ :return: a tuple (timesteps, weights):
49
+ - timesteps: a tensor of timestep indices.
50
+ - weights: a tensor of weights to scale the resulting losses.
51
+ """
52
+ w = self.weights()
53
+ p = w / np.sum(w)
54
+ indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
55
+ indices = th.from_numpy(indices_np).long().to(device)
56
+ weights_np = 1 / (len(p) * p[indices_np])
57
+ weights = th.from_numpy(weights_np).float().to(device)
58
+ return indices, weights
59
+
60
+
61
+ class UniformSampler(ScheduleSampler):
62
+ def __init__(self, diffusion):
63
+ self.diffusion = diffusion
64
+ self._weights = np.ones([diffusion.num_timesteps])
65
+
66
+ def weights(self):
67
+ return self._weights
68
+
69
+
70
+ class LossAwareSampler(ScheduleSampler):
71
+ def update_with_local_losses(self, local_ts, local_losses):
72
+ """
73
+ Update the reweighting using losses from a model.
74
+
75
+ Call this method from each rank with a batch of timesteps and the
76
+ corresponding losses for each of those timesteps.
77
+ This method will perform synchronization to make sure all of the ranks
78
+ maintain the exact same reweighting.
79
+
80
+ :param local_ts: an integer Tensor of timesteps.
81
+ :param local_losses: a 1D Tensor of losses.
82
+ """
83
+ batch_sizes = [
84
+ th.tensor([0], dtype=th.int32, device=local_ts.device)
85
+ for _ in range(dist.get_world_size())
86
+ ]
87
+ dist.all_gather(
88
+ batch_sizes,
89
+ th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
90
+ )
91
+
92
+ # Pad all_gather batches to be the maximum batch size.
93
+ batch_sizes = [x.item() for x in batch_sizes]
94
+ max_bs = max(batch_sizes)
95
+
96
+ timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
97
+ loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
98
+ dist.all_gather(timestep_batches, local_ts)
99
+ dist.all_gather(loss_batches, local_losses)
100
+ timesteps = [
101
+ x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
102
+ ]
103
+ losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
104
+ self.update_with_all_losses(timesteps, losses)
105
+
106
+ @abstractmethod
107
+ def update_with_all_losses(self, ts, losses):
108
+ """
109
+ Update the reweighting using losses from a model.
110
+
111
+ Sub-classes should override this method to update the reweighting
112
+ using losses from the model.
113
+
114
+ This method directly updates the reweighting without synchronizing
115
+ between workers. It is called by update_with_local_losses from all
116
+ ranks with identical arguments. Thus, it should have deterministic
117
+ behavior to maintain state across workers.
118
+
119
+ :param ts: a list of int timesteps.
120
+ :param losses: a list of float losses, one per timestep.
121
+ """
122
+
123
+
124
+ class LossSecondMomentResampler(LossAwareSampler):
125
+ def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
126
+ self.diffusion = diffusion
127
+ self.history_per_term = history_per_term
128
+ self.uniform_prob = uniform_prob
129
+ self._loss_history = np.zeros(
130
+ [diffusion.num_timesteps, history_per_term], dtype=np.float64
131
+ )
132
+ self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
133
+
134
+ def weights(self):
135
+ if not self._warmed_up():
136
+ return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
137
+ weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1))
138
+ weights /= np.sum(weights)
139
+ weights *= 1 - self.uniform_prob
140
+ weights += self.uniform_prob / len(weights)
141
+ return weights
142
+
143
+ def update_with_all_losses(self, ts, losses):
144
+ for t, loss in zip(ts, losses):
145
+ if self._loss_counts[t] == self.history_per_term:
146
+ # Shift out the oldest loss term.
147
+ self._loss_history[t, :-1] = self._loss_history[t, 1:]
148
+ self._loss_history[t, -1] = loss
149
+ else:
150
+ self._loss_history[t, self._loss_counts[t]] = loss
151
+ self._loss_counts[t] += 1
152
+
153
+ def _warmed_up(self):
154
+ return (self._loss_counts == self.history_per_term).all()
guided_diffusion/respace.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch as th
3
+
4
+ from .gaussian_diffusion import GaussianDiffusion
5
+
6
+
7
+ def space_timesteps(num_timesteps, section_counts):
8
+ """
9
+ Create a list of timesteps to use from an original diffusion process,
10
+ given the number of timesteps we want to take from equally-sized portions
11
+ of the original process.
12
+
13
+ For example, if there's 300 timesteps and the section counts are [10,15,20]
14
+ then the first 100 timesteps are strided to be 10 timesteps, the second 100
15
+ are strided to be 15 timesteps, and the final 100 are strided to be 20.
16
+
17
+ If the stride is a string starting with "ddim", then the fixed striding
18
+ from the DDIM paper is used, and only one section is allowed.
19
+
20
+ :param num_timesteps: the number of diffusion steps in the original
21
+ process to divide up.
22
+ :param section_counts: either a list of numbers, or a string containing
23
+ comma-separated numbers, indicating the step count
24
+ per section. As a special case, use "ddimN" where N
25
+ is a number of steps to use the striding from the
26
+ DDIM paper.
27
+ :return: a set of diffusion steps from the original process to use.
28
+ """
29
+ if isinstance(section_counts, str):
30
+ if section_counts.startswith("ddim"):
31
+ desired_count = int(section_counts[len("ddim") :])
32
+ for i in range(1, num_timesteps):
33
+ if len(range(0, num_timesteps, i)) == desired_count:
34
+ return set(range(0, num_timesteps, i))
35
+ raise ValueError(
36
+ f"cannot create exactly {num_timesteps} steps with an integer stride"
37
+ )
38
+ section_counts = [int(x) for x in section_counts.split(",")]
39
+ size_per = num_timesteps // len(section_counts)
40
+ extra = num_timesteps % len(section_counts)
41
+ start_idx = 0
42
+ all_steps = []
43
+ for i, section_count in enumerate(section_counts):
44
+ size = size_per + (1 if i < extra else 0)
45
+ if size < section_count:
46
+ raise ValueError(
47
+ f"cannot divide section of {size} steps into {section_count}"
48
+ )
49
+ if section_count <= 1:
50
+ frac_stride = 1
51
+ else:
52
+ frac_stride = (size - 1) / (section_count - 1)
53
+ cur_idx = 0.0
54
+ taken_steps = []
55
+ for _ in range(section_count):
56
+ taken_steps.append(start_idx + round(cur_idx))
57
+ cur_idx += frac_stride
58
+ all_steps += taken_steps
59
+ start_idx += size
60
+ return set(all_steps)
61
+
62
+
63
+ class SpacedDiffusion(GaussianDiffusion):
64
+ """
65
+ A diffusion process which can skip steps in a base diffusion process.
66
+
67
+ :param use_timesteps: a collection (sequence or set) of timesteps from the
68
+ original diffusion process to retain.
69
+ :param kwargs: the kwargs to create the base diffusion process.
70
+ """
71
+
72
+ def __init__(self, use_timesteps, **kwargs):
73
+ self.use_timesteps = set(use_timesteps)
74
+ self.timestep_map = []
75
+ self.original_num_steps = len(kwargs["betas"])
76
+
77
+ base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
78
+ last_alpha_cumprod = 1.0
79
+ new_betas = []
80
+ for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
81
+ if i in self.use_timesteps:
82
+ new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
83
+ last_alpha_cumprod = alpha_cumprod
84
+ self.timestep_map.append(i)
85
+ kwargs["betas"] = np.array(new_betas)
86
+ super().__init__(**kwargs)
87
+
88
+ def p_mean_variance(
89
+ self, model, *args, **kwargs
90
+ ): # pylint: disable=signature-differs
91
+ return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
92
+
93
+ def training_losses(
94
+ self, model, *args, **kwargs
95
+ ): # pylint: disable=signature-differs
96
+ return super().training_losses(self._wrap_model(model), *args, **kwargs)
97
+
98
+ def condition_mean(self, cond_fn, *args, **kwargs):
99
+ return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
100
+
101
+ def condition_score(self, cond_fn, *args, **kwargs):
102
+ return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
103
+
104
+ def _wrap_model(self, model):
105
+ if isinstance(model, _WrappedModel):
106
+ return model
107
+ return _WrappedModel(
108
+ model, self.timestep_map, self.rescale_timesteps, self.original_num_steps
109
+ )
110
+
111
+ def _scale_timesteps(self, t):
112
+ # Scaling is done by the wrapped model.
113
+ return t
114
+
115
+
116
+ class _WrappedModel:
117
+ def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps):
118
+ self.model = model
119
+ self.timestep_map = timestep_map
120
+ self.rescale_timesteps = rescale_timesteps
121
+ self.original_num_steps = original_num_steps
122
+
123
+ def __call__(self, x, ts, **kwargs):
124
+ map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
125
+ new_ts = map_tensor[ts]
126
+ if self.rescale_timesteps:
127
+ new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
128
+ return self.model(x, new_ts, **kwargs)
guided_diffusion/script_util.py ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import inspect
3
+
4
+ from . import gaussian_diffusion as gd
5
+ from .respace import SpacedDiffusion, space_timesteps
6
+ from .unet import SuperResModel, UNetModel, EncoderUNetModel
7
+
8
+ NUM_CLASSES = 1000
9
+
10
+
11
+ def diffusion_defaults():
12
+ """
13
+ Defaults for image and classifier training.
14
+ """
15
+ return dict(
16
+ learn_sigma=False,
17
+ diffusion_steps=1000,
18
+ noise_schedule="linear",
19
+ timestep_respacing="",
20
+ use_kl=False,
21
+ predict_xstart=False,
22
+ rescale_timesteps=False,
23
+ rescale_learned_sigmas=False,
24
+ )
25
+
26
+
27
+ def classifier_defaults():
28
+ """
29
+ Defaults for classifier models.
30
+ """
31
+ return dict(
32
+ image_size=64,
33
+ classifier_use_fp16=False,
34
+ classifier_width=128,
35
+ classifier_depth=2,
36
+ classifier_attention_resolutions="32,16,8", # 16
37
+ classifier_use_scale_shift_norm=True, # False
38
+ classifier_resblock_updown=True, # False
39
+ classifier_pool="attention",
40
+ )
41
+
42
+
43
+ def model_and_diffusion_defaults():
44
+ """
45
+ Defaults for image training.
46
+ """
47
+ res = dict(
48
+ image_size=64,
49
+ num_channels=128,
50
+ num_res_blocks=2,
51
+ num_heads=4,
52
+ num_heads_upsample=-1,
53
+ num_head_channels=-1,
54
+ attention_resolutions="16,8",
55
+ channel_mult="",
56
+ dropout=0.0,
57
+ p2_gamma=0,
58
+ p2_k=1,
59
+ class_cond=False,
60
+ use_checkpoint=False,
61
+ use_scale_shift_norm=True,
62
+ resblock_updown=False,
63
+ use_fp16=False,
64
+ use_new_attention_order=False,
65
+ )
66
+ res.update(diffusion_defaults())
67
+ return res
68
+
69
+
70
+ def classifier_and_diffusion_defaults():
71
+ res = classifier_defaults()
72
+ res.update(diffusion_defaults())
73
+ return res
74
+
75
+
76
+ def create_model_and_diffusion(
77
+ image_size,
78
+ class_cond,
79
+ learn_sigma,
80
+ num_channels,
81
+ num_res_blocks,
82
+ channel_mult,
83
+ num_heads,
84
+ num_head_channels,
85
+ num_heads_upsample,
86
+ attention_resolutions,
87
+ dropout,
88
+ p2_gamma,
89
+ p2_k,
90
+ diffusion_steps,
91
+ noise_schedule,
92
+ timestep_respacing,
93
+ use_kl,
94
+ predict_xstart,
95
+ rescale_timesteps,
96
+ rescale_learned_sigmas,
97
+ use_checkpoint,
98
+ use_scale_shift_norm,
99
+ resblock_updown,
100
+ use_fp16,
101
+ use_new_attention_order,
102
+ ):
103
+ model = create_model(
104
+ image_size,
105
+ num_channels,
106
+ num_res_blocks,
107
+ channel_mult=channel_mult,
108
+ learn_sigma=learn_sigma,
109
+ class_cond=class_cond,
110
+ use_checkpoint=use_checkpoint,
111
+ attention_resolutions=attention_resolutions,
112
+ num_heads=num_heads,
113
+ num_head_channels=num_head_channels,
114
+ num_heads_upsample=num_heads_upsample,
115
+ use_scale_shift_norm=use_scale_shift_norm,
116
+ dropout=dropout,
117
+ resblock_updown=resblock_updown,
118
+ use_fp16=use_fp16,
119
+ use_new_attention_order=use_new_attention_order,
120
+ )
121
+ diffusion = create_gaussian_diffusion(
122
+ steps=diffusion_steps,
123
+ learn_sigma=learn_sigma,
124
+ noise_schedule=noise_schedule,
125
+ use_kl=use_kl,
126
+ predict_xstart=predict_xstart,
127
+ rescale_timesteps=rescale_timesteps,
128
+ rescale_learned_sigmas=rescale_learned_sigmas,
129
+ timestep_respacing=timestep_respacing,
130
+ p2_gamma=p2_gamma,
131
+ p2_k=p2_k,
132
+ )
133
+ return model, diffusion
134
+
135
+
136
+ def create_model(
137
+ image_size,
138
+ num_channels,
139
+ num_res_blocks,
140
+ channel_mult="",
141
+ learn_sigma=False,
142
+ class_cond=False,
143
+ use_checkpoint=False,
144
+ attention_resolutions="16",
145
+ num_heads=1,
146
+ num_head_channels=-1,
147
+ num_heads_upsample=-1,
148
+ use_scale_shift_norm=False,
149
+ dropout=0,
150
+ resblock_updown=False,
151
+ use_fp16=False,
152
+ use_new_attention_order=False,
153
+ ):
154
+ if channel_mult == "":
155
+ if image_size == 512:
156
+ channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
157
+ elif image_size == 256:
158
+ channel_mult = (1, 1, 2, 2, 4, 4)
159
+ elif image_size == 128:
160
+ channel_mult = (1, 1, 2, 3, 4)
161
+ elif image_size == 64:
162
+ channel_mult = (1, 2, 3, 4)
163
+ else:
164
+ raise ValueError(f"unsupported image size: {image_size}")
165
+ else:
166
+ channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(","))
167
+
168
+ attention_ds = []
169
+ for res in attention_resolutions.split(","):
170
+ attention_ds.append(image_size // int(res))
171
+
172
+ return UNetModel(
173
+ image_size=image_size,
174
+ in_channels=3,
175
+ model_channels=num_channels,
176
+ out_channels=(3 if not learn_sigma else 6),
177
+ num_res_blocks=num_res_blocks,
178
+ attention_resolutions=tuple(attention_ds),
179
+ dropout=dropout,
180
+ channel_mult=channel_mult,
181
+ num_classes=(NUM_CLASSES if class_cond else None),
182
+ use_checkpoint=use_checkpoint,
183
+ use_fp16=use_fp16,
184
+ num_heads=num_heads,
185
+ num_head_channels=num_head_channels,
186
+ num_heads_upsample=num_heads_upsample,
187
+ use_scale_shift_norm=use_scale_shift_norm,
188
+ resblock_updown=resblock_updown,
189
+ use_new_attention_order=use_new_attention_order,
190
+ )
191
+
192
+
193
+ def create_classifier_and_diffusion(
194
+ image_size,
195
+ classifier_use_fp16,
196
+ classifier_width,
197
+ classifier_depth,
198
+ classifier_attention_resolutions,
199
+ classifier_use_scale_shift_norm,
200
+ classifier_resblock_updown,
201
+ classifier_pool,
202
+ learn_sigma,
203
+ diffusion_steps,
204
+ noise_schedule,
205
+ timestep_respacing,
206
+ use_kl,
207
+ predict_xstart,
208
+ rescale_timesteps,
209
+ rescale_learned_sigmas,
210
+ ):
211
+ classifier = create_classifier(
212
+ image_size,
213
+ classifier_use_fp16,
214
+ classifier_width,
215
+ classifier_depth,
216
+ classifier_attention_resolutions,
217
+ classifier_use_scale_shift_norm,
218
+ classifier_resblock_updown,
219
+ classifier_pool,
220
+ )
221
+ diffusion = create_gaussian_diffusion(
222
+ steps=diffusion_steps,
223
+ learn_sigma=learn_sigma,
224
+ noise_schedule=noise_schedule,
225
+ use_kl=use_kl,
226
+ predict_xstart=predict_xstart,
227
+ rescale_timesteps=rescale_timesteps,
228
+ rescale_learned_sigmas=rescale_learned_sigmas,
229
+ timestep_respacing=timestep_respacing,
230
+ )
231
+ return classifier, diffusion
232
+
233
+
234
+ def create_classifier(
235
+ image_size,
236
+ classifier_use_fp16,
237
+ classifier_width,
238
+ classifier_depth,
239
+ classifier_attention_resolutions,
240
+ classifier_use_scale_shift_norm,
241
+ classifier_resblock_updown,
242
+ classifier_pool,
243
+ ):
244
+ if image_size == 512:
245
+ channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
246
+ elif image_size == 256:
247
+ channel_mult = (1, 1, 2, 2, 4, 4)
248
+ elif image_size == 128:
249
+ channel_mult = (1, 1, 2, 3, 4)
250
+ elif image_size == 64:
251
+ channel_mult = (1, 2, 3, 4)
252
+ else:
253
+ raise ValueError(f"unsupported image size: {image_size}")
254
+
255
+ attention_ds = []
256
+ for res in classifier_attention_resolutions.split(","):
257
+ attention_ds.append(image_size // int(res))
258
+
259
+ return EncoderUNetModel(
260
+ image_size=image_size,
261
+ in_channels=3,
262
+ model_channels=classifier_width,
263
+ out_channels=1000,
264
+ num_res_blocks=classifier_depth,
265
+ attention_resolutions=tuple(attention_ds),
266
+ channel_mult=channel_mult,
267
+ use_fp16=classifier_use_fp16,
268
+ num_head_channels=64,
269
+ use_scale_shift_norm=classifier_use_scale_shift_norm,
270
+ resblock_updown=classifier_resblock_updown,
271
+ pool=classifier_pool,
272
+ )
273
+
274
+
275
+ def sr_model_and_diffusion_defaults():
276
+ res = model_and_diffusion_defaults()
277
+ res["large_size"] = 256
278
+ res["small_size"] = 64
279
+ arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0]
280
+ for k in res.copy().keys():
281
+ if k not in arg_names:
282
+ del res[k]
283
+ return res
284
+
285
+
286
+ def sr_create_model_and_diffusion(
287
+ large_size,
288
+ small_size,
289
+ class_cond,
290
+ learn_sigma,
291
+ num_channels,
292
+ num_res_blocks,
293
+ num_heads,
294
+ num_head_channels,
295
+ num_heads_upsample,
296
+ attention_resolutions,
297
+ dropout,
298
+ diffusion_steps,
299
+ noise_schedule,
300
+ timestep_respacing,
301
+ use_kl,
302
+ predict_xstart,
303
+ rescale_timesteps,
304
+ rescale_learned_sigmas,
305
+ use_checkpoint,
306
+ use_scale_shift_norm,
307
+ resblock_updown,
308
+ use_fp16,
309
+ p2_gamma,
310
+ p2_k,
311
+ ):
312
+ model = sr_create_model(
313
+ large_size,
314
+ small_size,
315
+ num_channels,
316
+ num_res_blocks,
317
+ learn_sigma=learn_sigma,
318
+ class_cond=class_cond,
319
+ use_checkpoint=use_checkpoint,
320
+ attention_resolutions=attention_resolutions,
321
+ num_heads=num_heads,
322
+ num_head_channels=num_head_channels,
323
+ num_heads_upsample=num_heads_upsample,
324
+ use_scale_shift_norm=use_scale_shift_norm,
325
+ dropout=dropout,
326
+ resblock_updown=resblock_updown,
327
+ use_fp16=use_fp16,
328
+ )
329
+ diffusion = create_gaussian_diffusion(
330
+ steps=diffusion_steps,
331
+ learn_sigma=learn_sigma,
332
+ noise_schedule=noise_schedule,
333
+ use_kl=use_kl,
334
+ predict_xstart=predict_xstart,
335
+ rescale_timesteps=rescale_timesteps,
336
+ rescale_learned_sigmas=rescale_learned_sigmas,
337
+ timestep_respacing=timestep_respacing,
338
+ p2_gamma=p2_gamma,
339
+ p2_k=p2_k,
340
+ )
341
+ return model, diffusion
342
+
343
+
344
+ def sr_create_model(
345
+ large_size,
346
+ small_size,
347
+ num_channels,
348
+ num_res_blocks,
349
+ learn_sigma,
350
+ class_cond,
351
+ use_checkpoint,
352
+ attention_resolutions,
353
+ num_heads,
354
+ num_head_channels,
355
+ num_heads_upsample,
356
+ use_scale_shift_norm,
357
+ dropout,
358
+ resblock_updown,
359
+ use_fp16,
360
+ ):
361
+ _ = small_size # hack to prevent unused variable
362
+
363
+ if large_size == 512:
364
+ channel_mult = (1, 1, 2, 2, 4, 4)
365
+ elif large_size == 256:
366
+ channel_mult = (1, 1, 2, 2, 4, 4)
367
+ elif large_size == 64:
368
+ channel_mult = (1, 2, 3, 4)
369
+ else:
370
+ raise ValueError(f"unsupported large size: {large_size}")
371
+
372
+ attention_ds = []
373
+ for res in attention_resolutions.split(","):
374
+ attention_ds.append(large_size // int(res))
375
+
376
+ return SuperResModel(
377
+ image_size=large_size,
378
+ in_channels=3,
379
+ model_channels=num_channels,
380
+ out_channels=(3 if not learn_sigma else 6),
381
+ num_res_blocks=num_res_blocks,
382
+ attention_resolutions=tuple(attention_ds),
383
+ dropout=dropout,
384
+ channel_mult=channel_mult,
385
+ num_classes=(NUM_CLASSES if class_cond else None),
386
+ use_checkpoint=use_checkpoint,
387
+ num_heads=num_heads,
388
+ num_head_channels=num_head_channels,
389
+ num_heads_upsample=num_heads_upsample,
390
+ use_scale_shift_norm=use_scale_shift_norm,
391
+ resblock_updown=resblock_updown,
392
+ use_fp16=use_fp16,
393
+ )
394
+
395
+
396
+ def create_gaussian_diffusion(
397
+ *,
398
+ steps=1000,
399
+ learn_sigma=False,
400
+ sigma_small=False,
401
+ noise_schedule="linear",
402
+ use_kl=False,
403
+ predict_xstart=False,
404
+ rescale_timesteps=False,
405
+ rescale_learned_sigmas=False,
406
+ timestep_respacing="",
407
+ p2_gamma=0,
408
+ p2_k=1,
409
+ ):
410
+ betas = gd.get_named_beta_schedule(noise_schedule, steps)
411
+ if use_kl:
412
+ loss_type = gd.LossType.RESCALED_KL
413
+ elif rescale_learned_sigmas:
414
+ loss_type = gd.LossType.RESCALED_MSE
415
+ else:
416
+ loss_type = gd.LossType.MSE
417
+ if not timestep_respacing:
418
+ timestep_respacing = [steps]
419
+ return SpacedDiffusion(
420
+ use_timesteps=space_timesteps(steps, timestep_respacing),
421
+ betas=betas,
422
+ model_mean_type=(
423
+ gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
424
+ ),
425
+ model_var_type=(
426
+ (
427
+ gd.ModelVarType.FIXED_LARGE
428
+ if not sigma_small
429
+ else gd.ModelVarType.FIXED_SMALL
430
+ )
431
+ if not learn_sigma
432
+ else gd.ModelVarType.LEARNED_RANGE
433
+ ),
434
+ loss_type=loss_type,
435
+ rescale_timesteps=rescale_timesteps,
436
+ p2_gamma=p2_gamma,
437
+ p2_k=p2_k,
438
+ )
439
+
440
+
441
+ def add_dict_to_argparser(parser, default_dict):
442
+ for k, v in default_dict.items():
443
+ v_type = type(v)
444
+ if v is None:
445
+ v_type = str
446
+ elif isinstance(v, bool):
447
+ v_type = str2bool
448
+ parser.add_argument(f"--{k}", default=v, type=v_type)
449
+
450
+
451
+ def args_to_dict(args, keys):
452
+ return {k: getattr(args, k) for k in keys}
453
+
454
+
455
+ def str2bool(v):
456
+ """
457
+ https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
458
+ """
459
+ if isinstance(v, bool):
460
+ return v
461
+ if v.lower() in ("yes", "true", "t", "y", "1"):
462
+ return True
463
+ elif v.lower() in ("no", "false", "f", "n", "0"):
464
+ return False
465
+ else:
466
+ raise argparse.ArgumentTypeError("boolean value expected")
guided_diffusion/train_util.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import functools
3
+ import os
4
+
5
+ import blobfile as bf
6
+ import torch as th
7
+ import torch.distributed as dist
8
+ from torch.nn.parallel.distributed import DistributedDataParallel as DDP
9
+ from torch.optim import AdamW
10
+
11
+ from . import dist_util, logger
12
+ from .fp16_util import MixedPrecisionTrainer
13
+ from .nn import update_ema
14
+ from .resample import LossAwareSampler, UniformSampler
15
+
16
+ # For ImageNet experiments, this was a good default value.
17
+ # We found that the lg_loss_scale quickly climbed to
18
+ # 20-21 within the first ~1K steps of training.
19
+ INITIAL_LOG_LOSS_SCALE = 20.0
20
+
21
+
22
+ class TrainLoop:
23
+ def __init__(
24
+ self,
25
+ *,
26
+ model,
27
+ diffusion,
28
+ data,
29
+ batch_size,
30
+ microbatch,
31
+ lr,
32
+ ema_rate,
33
+ log_interval,
34
+ save_interval,
35
+ resume_checkpoint,
36
+ use_fp16=False,
37
+ fp16_scale_growth=1e-3,
38
+ schedule_sampler=None,
39
+ weight_decay=0.0,
40
+ lr_anneal_steps=0,
41
+ ):
42
+ self.model = model
43
+ self.diffusion = diffusion
44
+ self.data = data
45
+ self.batch_size = batch_size
46
+ self.microbatch = microbatch if microbatch > 0 else batch_size
47
+ self.lr = lr
48
+ self.ema_rate = (
49
+ [ema_rate]
50
+ if isinstance(ema_rate, float)
51
+ else [float(x) for x in ema_rate.split(",")]
52
+ )
53
+ self.log_interval = log_interval
54
+ self.save_interval = save_interval
55
+ self.resume_checkpoint = resume_checkpoint
56
+ self.use_fp16 = use_fp16
57
+ self.fp16_scale_growth = fp16_scale_growth
58
+ self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
59
+ self.weight_decay = weight_decay
60
+ self.lr_anneal_steps = lr_anneal_steps
61
+
62
+ self.step = 0
63
+ self.resume_step = 0
64
+ self.global_batch = self.batch_size * dist.get_world_size()
65
+
66
+ self.sync_cuda = th.cuda.is_available()
67
+
68
+ self._load_and_sync_parameters()
69
+ self.mp_trainer = MixedPrecisionTrainer(
70
+ model=self.model,
71
+ use_fp16=self.use_fp16,
72
+ fp16_scale_growth=fp16_scale_growth,
73
+ )
74
+
75
+ self.opt = AdamW(
76
+ self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay
77
+ )
78
+ if self.resume_step:
79
+ self._load_optimizer_state()
80
+ # Model was resumed, either due to a restart or a checkpoint
81
+ # being specified at the command line.
82
+ self.ema_params = [
83
+ self._load_ema_parameters(rate) for rate in self.ema_rate
84
+ ]
85
+ else:
86
+ self.ema_params = [
87
+ copy.deepcopy(self.mp_trainer.master_params)
88
+ for _ in range(len(self.ema_rate))
89
+ ]
90
+
91
+ if th.cuda.is_available():
92
+ self.use_ddp = True
93
+ self.ddp_model = DDP(
94
+ self.model,
95
+ device_ids=[dist_util.dev()],
96
+ output_device=dist_util.dev(),
97
+ broadcast_buffers=False,
98
+ bucket_cap_mb=128,
99
+ find_unused_parameters=False,
100
+ )
101
+ else:
102
+ if dist.get_world_size() > 1:
103
+ logger.warn(
104
+ "Distributed training requires CUDA. "
105
+ "Gradients will not be synchronized properly!"
106
+ )
107
+ self.use_ddp = False
108
+ self.ddp_model = self.model
109
+
110
+ def _load_and_sync_parameters(self):
111
+ resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
112
+
113
+ if resume_checkpoint:
114
+ self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
115
+ if dist.get_rank() == 0:
116
+ logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
117
+ self.model.load_state_dict(
118
+ dist_util.load_state_dict(
119
+ resume_checkpoint, map_location=dist_util.dev()
120
+ )
121
+ )
122
+
123
+ dist_util.sync_params(self.model.parameters())
124
+
125
+ def _load_ema_parameters(self, rate):
126
+ ema_params = copy.deepcopy(self.mp_trainer.master_params)
127
+
128
+ main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
129
+ ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
130
+ if ema_checkpoint:
131
+ if dist.get_rank() == 0:
132
+ logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
133
+ state_dict = dist_util.load_state_dict(
134
+ ema_checkpoint, map_location=dist_util.dev()
135
+ )
136
+ ema_params = self.mp_trainer.state_dict_to_master_params(state_dict)
137
+
138
+ dist_util.sync_params(ema_params)
139
+ return ema_params
140
+
141
+ def _load_optimizer_state(self):
142
+ main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
143
+ opt_checkpoint = bf.join(
144
+ bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt"
145
+ )
146
+ if bf.exists(opt_checkpoint):
147
+ logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
148
+ state_dict = dist_util.load_state_dict(
149
+ opt_checkpoint, map_location=dist_util.dev()
150
+ )
151
+ self.opt.load_state_dict(state_dict)
152
+
153
+ def run_loop(self):
154
+ while (
155
+ not self.lr_anneal_steps
156
+ or self.step + self.resume_step < self.lr_anneal_steps
157
+ ):
158
+ batch, cond = next(self.data)
159
+ self.run_step(batch, cond)
160
+ if self.step % self.log_interval == 0:
161
+ logger.dumpkvs()
162
+ if self.step % self.save_interval == 0:
163
+ self.save()
164
+ # Run for a finite amount of time in integration tests.
165
+ if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
166
+ return
167
+ self.step += 1
168
+ # Save the last checkpoint if it wasn't already saved.
169
+ if (self.step - 1) % self.save_interval != 0:
170
+ self.save()
171
+
172
+ def run_step(self, batch, cond):
173
+ self.forward_backward(batch, cond)
174
+ took_step = self.mp_trainer.optimize(self.opt)
175
+ if took_step:
176
+ self._update_ema()
177
+ self._anneal_lr()
178
+ self.log_step()
179
+
180
+ def forward_backward(self, batch, cond):
181
+ self.mp_trainer.zero_grad()
182
+ for i in range(0, batch.shape[0], self.microbatch):
183
+ micro = batch[i : i + self.microbatch].to(dist_util.dev())
184
+ micro_cond = {
185
+ k: v[i : i + self.microbatch].to(dist_util.dev())
186
+ for k, v in cond.items()
187
+ }
188
+ last_batch = (i + self.microbatch) >= batch.shape[0]
189
+ t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
190
+
191
+ compute_losses = functools.partial(
192
+ self.diffusion.training_losses,
193
+ self.ddp_model,
194
+ micro,
195
+ t,
196
+ model_kwargs=micro_cond,
197
+ )
198
+
199
+ if last_batch or not self.use_ddp:
200
+ losses = compute_losses()
201
+ else:
202
+ with self.ddp_model.no_sync():
203
+ losses = compute_losses()
204
+
205
+ if isinstance(self.schedule_sampler, LossAwareSampler):
206
+ self.schedule_sampler.update_with_local_losses(
207
+ t, losses["loss"].detach()
208
+ )
209
+
210
+ loss = (losses["loss"] * weights).mean()
211
+ log_loss_dict(
212
+ self.diffusion, t, {k: v * weights for k, v in losses.items()}
213
+ )
214
+ self.mp_trainer.backward(loss)
215
+
216
+ def _update_ema(self):
217
+ for rate, params in zip(self.ema_rate, self.ema_params):
218
+ update_ema(params, self.mp_trainer.master_params, rate=rate)
219
+
220
+ def _anneal_lr(self):
221
+ if not self.lr_anneal_steps:
222
+ return
223
+ frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
224
+ lr = self.lr * (1 - frac_done)
225
+ for param_group in self.opt.param_groups:
226
+ param_group["lr"] = lr
227
+
228
+ def log_step(self):
229
+ logger.logkv("step", self.step + self.resume_step)
230
+ logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
231
+
232
+ def save(self):
233
+ def save_checkpoint(rate, params):
234
+ state_dict = self.mp_trainer.master_params_to_state_dict(params)
235
+ if dist.get_rank() == 0:
236
+ logger.log(f"saving model {rate}...")
237
+ if not rate:
238
+ filename = f"model{(self.step+self.resume_step):06d}.pt"
239
+ else:
240
+ filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt"
241
+ with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f:
242
+ th.save(state_dict, f)
243
+
244
+ save_checkpoint(0, self.mp_trainer.master_params)
245
+ for rate, params in zip(self.ema_rate, self.ema_params):
246
+ save_checkpoint(rate, params)
247
+
248
+ if dist.get_rank() == 0:
249
+ with bf.BlobFile(
250
+ bf.join(get_blob_logdir(), f"opt{(self.step+self.resume_step):06d}.pt"),
251
+ "wb",
252
+ ) as f:
253
+ th.save(self.opt.state_dict(), f)
254
+
255
+ dist.barrier()
256
+
257
+
258
+ def parse_resume_step_from_filename(filename):
259
+ """
260
+ Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
261
+ checkpoint's number of steps.
262
+ """
263
+ split = filename.split("model")
264
+ if len(split) < 2:
265
+ return 0
266
+ split1 = split[-1].split(".")[0]
267
+ try:
268
+ return int(split1)
269
+ except ValueError:
270
+ return 0
271
+
272
+
273
+ def get_blob_logdir():
274
+ # You can change this to be a separate path to save checkpoints to
275
+ # a blobstore or some external drive.
276
+ return logger.get_dir()
277
+
278
+
279
+ def find_resume_checkpoint():
280
+ # On your infrastructure, you may want to override this to automatically
281
+ # discover the latest checkpoint on your blob storage, etc.
282
+ return None
283
+
284
+
285
+ def find_ema_checkpoint(main_checkpoint, step, rate):
286
+ if main_checkpoint is None:
287
+ return None
288
+ filename = f"ema_{rate}_{(step):06d}.pt"
289
+ path = bf.join(bf.dirname(main_checkpoint), filename)
290
+ if bf.exists(path):
291
+ return path
292
+ return None
293
+
294
+
295
+ def log_loss_dict(diffusion, ts, losses):
296
+ for key, values in losses.items():
297
+ logger.logkv_mean(key, values.mean().item())
298
+ # Log the quantiles (four quartiles, in particular).
299
+ for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
300
+ quartile = int(4 * sub_t / diffusion.num_timesteps)
301
+ logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
guided_diffusion/unet.py ADDED
@@ -0,0 +1,894 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+
3
+ import math
4
+
5
+ import numpy as np
6
+ import torch as th
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+
10
+ from .fp16_util import convert_module_to_f16, convert_module_to_f32
11
+ from .nn import (
12
+ checkpoint,
13
+ conv_nd,
14
+ linear,
15
+ avg_pool_nd,
16
+ zero_module,
17
+ normalization,
18
+ timestep_embedding,
19
+ )
20
+
21
+
22
+ class AttentionPool2d(nn.Module):
23
+ """
24
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ spacial_dim: int,
30
+ embed_dim: int,
31
+ num_heads_channels: int,
32
+ output_dim: int = None,
33
+ ):
34
+ super().__init__()
35
+ self.positional_embedding = nn.Parameter(
36
+ th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
37
+ )
38
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
39
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
40
+ self.num_heads = embed_dim // num_heads_channels
41
+ self.attention = QKVAttention(self.num_heads)
42
+
43
+ def forward(self, x):
44
+ b, c, *_spatial = x.shape
45
+ x = x.reshape(b, c, -1) # NC(HW)
46
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
47
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
48
+ x = self.qkv_proj(x)
49
+ x = self.attention(x)
50
+ x = self.c_proj(x)
51
+ return x[:, :, 0]
52
+
53
+
54
+ class TimestepBlock(nn.Module):
55
+ """
56
+ Any module where forward() takes timestep embeddings as a second argument.
57
+ """
58
+
59
+ @abstractmethod
60
+ def forward(self, x, emb):
61
+ """
62
+ Apply the module to `x` given `emb` timestep embeddings.
63
+ """
64
+
65
+
66
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
67
+ """
68
+ A sequential module that passes timestep embeddings to the children that
69
+ support it as an extra input.
70
+ """
71
+
72
+ def forward(self, x, emb):
73
+ for layer in self:
74
+ if isinstance(layer, TimestepBlock):
75
+ x = layer(x, emb)
76
+ else:
77
+ x = layer(x)
78
+ return x
79
+
80
+
81
+ class Upsample(nn.Module):
82
+ """
83
+ An upsampling layer with an optional convolution.
84
+
85
+ :param channels: channels in the inputs and outputs.
86
+ :param use_conv: a bool determining if a convolution is applied.
87
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
88
+ upsampling occurs in the inner-two dimensions.
89
+ """
90
+
91
+ def __init__(self, channels, use_conv, dims=2, out_channels=None):
92
+ super().__init__()
93
+ self.channels = channels
94
+ self.out_channels = out_channels or channels
95
+ self.use_conv = use_conv
96
+ self.dims = dims
97
+ if use_conv:
98
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
99
+
100
+ def forward(self, x):
101
+ assert x.shape[1] == self.channels
102
+ if self.dims == 3:
103
+ x = F.interpolate(
104
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
105
+ )
106
+ else:
107
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
108
+ if self.use_conv:
109
+ x = self.conv(x)
110
+ return x
111
+
112
+
113
+ class Downsample(nn.Module):
114
+ """
115
+ A downsampling layer with an optional convolution.
116
+
117
+ :param channels: channels in the inputs and outputs.
118
+ :param use_conv: a bool determining if a convolution is applied.
119
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
120
+ downsampling occurs in the inner-two dimensions.
121
+ """
122
+
123
+ def __init__(self, channels, use_conv, dims=2, out_channels=None):
124
+ super().__init__()
125
+ self.channels = channels
126
+ self.out_channels = out_channels or channels
127
+ self.use_conv = use_conv
128
+ self.dims = dims
129
+ stride = 2 if dims != 3 else (1, 2, 2)
130
+ if use_conv:
131
+ self.op = conv_nd(
132
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=1
133
+ )
134
+ else:
135
+ assert self.channels == self.out_channels
136
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
137
+
138
+ def forward(self, x):
139
+ assert x.shape[1] == self.channels
140
+ return self.op(x)
141
+
142
+
143
+ class ResBlock(TimestepBlock):
144
+ """
145
+ A residual block that can optionally change the number of channels.
146
+
147
+ :param channels: the number of input channels.
148
+ :param emb_channels: the number of timestep embedding channels.
149
+ :param dropout: the rate of dropout.
150
+ :param out_channels: if specified, the number of out channels.
151
+ :param use_conv: if True and out_channels is specified, use a spatial
152
+ convolution instead of a smaller 1x1 convolution to change the
153
+ channels in the skip connection.
154
+ :param dims: determines if the signal is 1D, 2D, or 3D.
155
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
156
+ :param up: if True, use this block for upsampling.
157
+ :param down: if True, use this block for downsampling.
158
+ """
159
+
160
+ def __init__(
161
+ self,
162
+ channels,
163
+ emb_channels,
164
+ dropout,
165
+ out_channels=None,
166
+ use_conv=False,
167
+ use_scale_shift_norm=False,
168
+ dims=2,
169
+ use_checkpoint=False,
170
+ up=False,
171
+ down=False,
172
+ ):
173
+ super().__init__()
174
+ self.channels = channels
175
+ self.emb_channels = emb_channels
176
+ self.dropout = dropout
177
+ self.out_channels = out_channels or channels
178
+ self.use_conv = use_conv
179
+ self.use_checkpoint = use_checkpoint
180
+ self.use_scale_shift_norm = use_scale_shift_norm
181
+
182
+ self.in_layers = nn.Sequential(
183
+ normalization(channels),
184
+ nn.SiLU(),
185
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
186
+ )
187
+
188
+ self.updown = up or down
189
+
190
+ if up:
191
+ self.h_upd = Upsample(channels, False, dims)
192
+ self.x_upd = Upsample(channels, False, dims)
193
+ elif down:
194
+ self.h_upd = Downsample(channels, False, dims)
195
+ self.x_upd = Downsample(channels, False, dims)
196
+ else:
197
+ self.h_upd = self.x_upd = nn.Identity()
198
+
199
+ self.emb_layers = nn.Sequential(
200
+ nn.SiLU(),
201
+ linear(
202
+ emb_channels,
203
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
204
+ ),
205
+ )
206
+ self.out_layers = nn.Sequential(
207
+ normalization(self.out_channels),
208
+ nn.SiLU(),
209
+ nn.Dropout(p=dropout),
210
+ zero_module(
211
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
212
+ ),
213
+ )
214
+
215
+ if self.out_channels == channels:
216
+ self.skip_connection = nn.Identity()
217
+ elif use_conv:
218
+ self.skip_connection = conv_nd(
219
+ dims, channels, self.out_channels, 3, padding=1
220
+ )
221
+ else:
222
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
223
+
224
+ def forward(self, x, emb):
225
+ """
226
+ Apply the block to a Tensor, conditioned on a timestep embedding.
227
+
228
+ :param x: an [N x C x ...] Tensor of features.
229
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
230
+ :return: an [N x C x ...] Tensor of outputs.
231
+ """
232
+ return checkpoint(
233
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
234
+ )
235
+
236
+ def _forward(self, x, emb):
237
+ if self.updown:
238
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
239
+ h = in_rest(x)
240
+ h = self.h_upd(h)
241
+ x = self.x_upd(x)
242
+ h = in_conv(h)
243
+ else:
244
+ h = self.in_layers(x)
245
+ emb_out = self.emb_layers(emb).type(h.dtype)
246
+ while len(emb_out.shape) < len(h.shape):
247
+ emb_out = emb_out[..., None]
248
+ if self.use_scale_shift_norm:
249
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
250
+ scale, shift = th.chunk(emb_out, 2, dim=1)
251
+ h = out_norm(h) * (1 + scale) + shift
252
+ h = out_rest(h)
253
+ else:
254
+ h = h + emb_out
255
+ h = self.out_layers(h)
256
+ return self.skip_connection(x) + h
257
+
258
+
259
+ class AttentionBlock(nn.Module):
260
+ """
261
+ An attention block that allows spatial positions to attend to each other.
262
+
263
+ Originally ported from here, but adapted to the N-d case.
264
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
265
+ """
266
+
267
+ def __init__(
268
+ self,
269
+ channels,
270
+ num_heads=1,
271
+ num_head_channels=-1,
272
+ use_checkpoint=False,
273
+ use_new_attention_order=False,
274
+ ):
275
+ super().__init__()
276
+ self.channels = channels
277
+ if num_head_channels == -1:
278
+ self.num_heads = num_heads
279
+ else:
280
+ assert (
281
+ channels % num_head_channels == 0
282
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
283
+ self.num_heads = channels // num_head_channels
284
+ self.use_checkpoint = use_checkpoint
285
+ self.norm = normalization(channels)
286
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
287
+ if use_new_attention_order:
288
+ # split qkv before split heads
289
+ self.attention = QKVAttention(self.num_heads)
290
+ else:
291
+ # split heads before split qkv
292
+ self.attention = QKVAttentionLegacy(self.num_heads)
293
+
294
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
295
+
296
+ def forward(self, x):
297
+ return checkpoint(self._forward, (x,), self.parameters(), True)
298
+
299
+ def _forward(self, x):
300
+ b, c, *spatial = x.shape
301
+ x = x.reshape(b, c, -1)
302
+ qkv = self.qkv(self.norm(x))
303
+ h = self.attention(qkv)
304
+ h = self.proj_out(h)
305
+ return (x + h).reshape(b, c, *spatial)
306
+
307
+
308
+ def count_flops_attn(model, _x, y):
309
+ """
310
+ A counter for the `thop` package to count the operations in an
311
+ attention operation.
312
+ Meant to be used like:
313
+ macs, params = thop.profile(
314
+ model,
315
+ inputs=(inputs, timestamps),
316
+ custom_ops={QKVAttention: QKVAttention.count_flops},
317
+ )
318
+ """
319
+ b, c, *spatial = y[0].shape
320
+ num_spatial = int(np.prod(spatial))
321
+ # We perform two matmuls with the same number of ops.
322
+ # The first computes the weight matrix, the second computes
323
+ # the combination of the value vectors.
324
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
325
+ model.total_ops += th.DoubleTensor([matmul_ops])
326
+
327
+
328
+ class QKVAttentionLegacy(nn.Module):
329
+ """
330
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
331
+ """
332
+
333
+ def __init__(self, n_heads):
334
+ super().__init__()
335
+ self.n_heads = n_heads
336
+
337
+ def forward(self, qkv):
338
+ """
339
+ Apply QKV attention.
340
+
341
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
342
+ :return: an [N x (H * C) x T] tensor after attention.
343
+ """
344
+ bs, width, length = qkv.shape
345
+ assert width % (3 * self.n_heads) == 0
346
+ ch = width // (3 * self.n_heads)
347
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
348
+ scale = 1 / math.sqrt(math.sqrt(ch))
349
+ weight = th.einsum(
350
+ "bct,bcs->bts", q * scale, k * scale
351
+ ) # More stable with f16 than dividing afterwards
352
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
353
+ a = th.einsum("bts,bcs->bct", weight, v)
354
+ return a.reshape(bs, -1, length)
355
+
356
+ @staticmethod
357
+ def count_flops(model, _x, y):
358
+ return count_flops_attn(model, _x, y)
359
+
360
+
361
+ class QKVAttention(nn.Module):
362
+ """
363
+ A module which performs QKV attention and splits in a different order.
364
+ """
365
+
366
+ def __init__(self, n_heads):
367
+ super().__init__()
368
+ self.n_heads = n_heads
369
+
370
+ def forward(self, qkv):
371
+ """
372
+ Apply QKV attention.
373
+
374
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
375
+ :return: an [N x (H * C) x T] tensor after attention.
376
+ """
377
+ bs, width, length = qkv.shape
378
+ assert width % (3 * self.n_heads) == 0
379
+ ch = width // (3 * self.n_heads)
380
+ q, k, v = qkv.chunk(3, dim=1)
381
+ scale = 1 / math.sqrt(math.sqrt(ch))
382
+ weight = th.einsum(
383
+ "bct,bcs->bts",
384
+ (q * scale).view(bs * self.n_heads, ch, length),
385
+ (k * scale).view(bs * self.n_heads, ch, length),
386
+ ) # More stable with f16 than dividing afterwards
387
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
388
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
389
+ return a.reshape(bs, -1, length)
390
+
391
+ @staticmethod
392
+ def count_flops(model, _x, y):
393
+ return count_flops_attn(model, _x, y)
394
+
395
+
396
+ class UNetModel(nn.Module):
397
+ """
398
+ The full UNet model with attention and timestep embedding.
399
+
400
+ :param in_channels: channels in the input Tensor.
401
+ :param model_channels: base channel count for the model.
402
+ :param out_channels: channels in the output Tensor.
403
+ :param num_res_blocks: number of residual blocks per downsample.
404
+ :param attention_resolutions: a collection of downsample rates at which
405
+ attention will take place. May be a set, list, or tuple.
406
+ For example, if this contains 4, then at 4x downsampling, attention
407
+ will be used.
408
+ :param dropout: the dropout probability.
409
+ :param channel_mult: channel multiplier for each level of the UNet.
410
+ :param conv_resample: if True, use learned convolutions for upsampling and
411
+ downsampling.
412
+ :param dims: determines if the signal is 1D, 2D, or 3D.
413
+ :param num_classes: if specified (as an int), then this model will be
414
+ class-conditional with `num_classes` classes.
415
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
416
+ :param num_heads: the number of attention heads in each attention layer.
417
+ :param num_heads_channels: if specified, ignore num_heads and instead use
418
+ a fixed channel width per attention head.
419
+ :param num_heads_upsample: works with num_heads to set a different number
420
+ of heads for upsampling. Deprecated.
421
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
422
+ :param resblock_updown: use residual blocks for up/downsampling.
423
+ :param use_new_attention_order: use a different attention pattern for potentially
424
+ increased efficiency.
425
+ """
426
+
427
+ def __init__(
428
+ self,
429
+ image_size,
430
+ in_channels,
431
+ model_channels,
432
+ out_channels,
433
+ num_res_blocks,
434
+ attention_resolutions,
435
+ dropout=0,
436
+ channel_mult=(1, 2, 4, 8),
437
+ conv_resample=True,
438
+ dims=2,
439
+ num_classes=None,
440
+ use_checkpoint=False,
441
+ use_fp16=False,
442
+ num_heads=1,
443
+ num_head_channels=-1,
444
+ num_heads_upsample=-1,
445
+ use_scale_shift_norm=False,
446
+ resblock_updown=False,
447
+ use_new_attention_order=False,
448
+ ):
449
+ super().__init__()
450
+
451
+ if num_heads_upsample == -1:
452
+ num_heads_upsample = num_heads
453
+
454
+ self.image_size = image_size
455
+ self.in_channels = in_channels
456
+ self.model_channels = model_channels
457
+ self.out_channels = out_channels
458
+ self.num_res_blocks = num_res_blocks
459
+ self.attention_resolutions = attention_resolutions
460
+ self.dropout = dropout
461
+ self.channel_mult = channel_mult
462
+ self.conv_resample = conv_resample
463
+ self.num_classes = num_classes
464
+ self.use_checkpoint = use_checkpoint
465
+ self.dtype = th.float16 if use_fp16 else th.float32
466
+ self.num_heads = num_heads
467
+ self.num_head_channels = num_head_channels
468
+ self.num_heads_upsample = num_heads_upsample
469
+
470
+ time_embed_dim = model_channels * 4
471
+ self.time_embed = nn.Sequential(
472
+ linear(model_channels, time_embed_dim),
473
+ nn.SiLU(),
474
+ linear(time_embed_dim, time_embed_dim),
475
+ )
476
+
477
+ if self.num_classes is not None:
478
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
479
+
480
+ ch = input_ch = int(channel_mult[0] * model_channels)
481
+ self.input_blocks = nn.ModuleList(
482
+ [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
483
+ )
484
+ self._feature_size = ch
485
+ input_block_chans = [ch]
486
+ ds = 1
487
+ for level, mult in enumerate(channel_mult):
488
+ for _ in range(num_res_blocks):
489
+ layers = [
490
+ ResBlock(
491
+ ch,
492
+ time_embed_dim,
493
+ dropout,
494
+ out_channels=int(mult * model_channels),
495
+ dims=dims,
496
+ use_checkpoint=use_checkpoint,
497
+ use_scale_shift_norm=use_scale_shift_norm,
498
+ )
499
+ ]
500
+ ch = int(mult * model_channels)
501
+ if ds in attention_resolutions:
502
+ layers.append(
503
+ AttentionBlock(
504
+ ch,
505
+ use_checkpoint=use_checkpoint,
506
+ num_heads=num_heads,
507
+ num_head_channels=num_head_channels,
508
+ use_new_attention_order=use_new_attention_order,
509
+ )
510
+ )
511
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
512
+ self._feature_size += ch
513
+ input_block_chans.append(ch)
514
+ if level != len(channel_mult) - 1:
515
+ out_ch = ch
516
+ self.input_blocks.append(
517
+ TimestepEmbedSequential(
518
+ ResBlock(
519
+ ch,
520
+ time_embed_dim,
521
+ dropout,
522
+ out_channels=out_ch,
523
+ dims=dims,
524
+ use_checkpoint=use_checkpoint,
525
+ use_scale_shift_norm=use_scale_shift_norm,
526
+ down=True,
527
+ )
528
+ if resblock_updown
529
+ else Downsample(
530
+ ch, conv_resample, dims=dims, out_channels=out_ch
531
+ )
532
+ )
533
+ )
534
+ ch = out_ch
535
+ input_block_chans.append(ch)
536
+ ds *= 2
537
+ self._feature_size += ch
538
+
539
+ self.middle_block = TimestepEmbedSequential(
540
+ ResBlock(
541
+ ch,
542
+ time_embed_dim,
543
+ dropout,
544
+ dims=dims,
545
+ use_checkpoint=use_checkpoint,
546
+ use_scale_shift_norm=use_scale_shift_norm,
547
+ ),
548
+ AttentionBlock(
549
+ ch,
550
+ use_checkpoint=use_checkpoint,
551
+ num_heads=num_heads,
552
+ num_head_channels=num_head_channels,
553
+ use_new_attention_order=use_new_attention_order,
554
+ ),
555
+ ResBlock(
556
+ ch,
557
+ time_embed_dim,
558
+ dropout,
559
+ dims=dims,
560
+ use_checkpoint=use_checkpoint,
561
+ use_scale_shift_norm=use_scale_shift_norm,
562
+ ),
563
+ )
564
+ self._feature_size += ch
565
+
566
+ self.output_blocks = nn.ModuleList([])
567
+ for level, mult in list(enumerate(channel_mult))[::-1]:
568
+ for i in range(num_res_blocks + 1):
569
+ ich = input_block_chans.pop()
570
+ layers = [
571
+ ResBlock(
572
+ ch + ich,
573
+ time_embed_dim,
574
+ dropout,
575
+ out_channels=int(model_channels * mult),
576
+ dims=dims,
577
+ use_checkpoint=use_checkpoint,
578
+ use_scale_shift_norm=use_scale_shift_norm,
579
+ )
580
+ ]
581
+ ch = int(model_channels * mult)
582
+ if ds in attention_resolutions:
583
+ layers.append(
584
+ AttentionBlock(
585
+ ch,
586
+ use_checkpoint=use_checkpoint,
587
+ num_heads=num_heads_upsample,
588
+ num_head_channels=num_head_channels,
589
+ use_new_attention_order=use_new_attention_order,
590
+ )
591
+ )
592
+ if level and i == num_res_blocks:
593
+ out_ch = ch
594
+ layers.append(
595
+ ResBlock(
596
+ ch,
597
+ time_embed_dim,
598
+ dropout,
599
+ out_channels=out_ch,
600
+ dims=dims,
601
+ use_checkpoint=use_checkpoint,
602
+ use_scale_shift_norm=use_scale_shift_norm,
603
+ up=True,
604
+ )
605
+ if resblock_updown
606
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
607
+ )
608
+ ds //= 2
609
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
610
+ self._feature_size += ch
611
+
612
+ self.out = nn.Sequential(
613
+ normalization(ch),
614
+ nn.SiLU(),
615
+ zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
616
+ )
617
+
618
+ def convert_to_fp16(self):
619
+ """
620
+ Convert the torso of the model to float16.
621
+ """
622
+ self.input_blocks.apply(convert_module_to_f16)
623
+ self.middle_block.apply(convert_module_to_f16)
624
+ self.output_blocks.apply(convert_module_to_f16)
625
+
626
+ def convert_to_fp32(self):
627
+ """
628
+ Convert the torso of the model to float32.
629
+ """
630
+ self.input_blocks.apply(convert_module_to_f32)
631
+ self.middle_block.apply(convert_module_to_f32)
632
+ self.output_blocks.apply(convert_module_to_f32)
633
+
634
+ def forward(self, x, timesteps, y=None):
635
+ """
636
+ Apply the model to an input batch.
637
+
638
+ :param x: an [N x C x ...] Tensor of inputs.
639
+ :param timesteps: a 1-D batch of timesteps.
640
+ :param y: an [N] Tensor of labels, if class-conditional.
641
+ :return: an [N x C x ...] Tensor of outputs.
642
+ """
643
+ assert (y is not None) == (
644
+ self.num_classes is not None
645
+ ), "must specify y if and only if the model is class-conditional"
646
+
647
+ hs = []
648
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
649
+
650
+ if self.num_classes is not None:
651
+ assert y.shape == (x.shape[0],)
652
+ emb = emb + self.label_emb(y)
653
+
654
+ h = x.type(self.dtype)
655
+ for module in self.input_blocks:
656
+ h = module(h, emb)
657
+ hs.append(h)
658
+ h = self.middle_block(h, emb)
659
+ for module in self.output_blocks:
660
+ h = th.cat([h, hs.pop()], dim=1)
661
+ h = module(h, emb)
662
+ h = h.type(x.dtype)
663
+ return self.out(h)
664
+
665
+
666
+ class SuperResModel(UNetModel):
667
+ """
668
+ A UNetModel that performs super-resolution.
669
+
670
+ Expects an extra kwarg `low_res` to condition on a low-resolution image.
671
+ """
672
+
673
+ def __init__(self, image_size, in_channels, *args, **kwargs):
674
+ super().__init__(image_size, in_channels * 2, *args, **kwargs)
675
+
676
+ def forward(self, x, timesteps, low_res=None, **kwargs):
677
+ _, _, new_height, new_width = x.shape
678
+ upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
679
+ x = th.cat([x, upsampled], dim=1)
680
+ return super().forward(x, timesteps, **kwargs)
681
+
682
+
683
+ class EncoderUNetModel(nn.Module):
684
+ """
685
+ The half UNet model with attention and timestep embedding.
686
+
687
+ For usage, see UNet.
688
+ """
689
+
690
+ def __init__(
691
+ self,
692
+ image_size,
693
+ in_channels,
694
+ model_channels,
695
+ out_channels,
696
+ num_res_blocks,
697
+ attention_resolutions,
698
+ dropout=0,
699
+ channel_mult=(1, 2, 4, 8),
700
+ conv_resample=True,
701
+ dims=2,
702
+ use_checkpoint=False,
703
+ use_fp16=False,
704
+ num_heads=1,
705
+ num_head_channels=-1,
706
+ num_heads_upsample=-1,
707
+ use_scale_shift_norm=False,
708
+ resblock_updown=False,
709
+ use_new_attention_order=False,
710
+ pool="adaptive",
711
+ ):
712
+ super().__init__()
713
+
714
+ if num_heads_upsample == -1:
715
+ num_heads_upsample = num_heads
716
+
717
+ self.in_channels = in_channels
718
+ self.model_channels = model_channels
719
+ self.out_channels = out_channels
720
+ self.num_res_blocks = num_res_blocks
721
+ self.attention_resolutions = attention_resolutions
722
+ self.dropout = dropout
723
+ self.channel_mult = channel_mult
724
+ self.conv_resample = conv_resample
725
+ self.use_checkpoint = use_checkpoint
726
+ self.dtype = th.float16 if use_fp16 else th.float32
727
+ self.num_heads = num_heads
728
+ self.num_head_channels = num_head_channels
729
+ self.num_heads_upsample = num_heads_upsample
730
+
731
+ time_embed_dim = model_channels * 4
732
+ self.time_embed = nn.Sequential(
733
+ linear(model_channels, time_embed_dim),
734
+ nn.SiLU(),
735
+ linear(time_embed_dim, time_embed_dim),
736
+ )
737
+
738
+ ch = int(channel_mult[0] * model_channels)
739
+ self.input_blocks = nn.ModuleList(
740
+ [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
741
+ )
742
+ self._feature_size = ch
743
+ input_block_chans = [ch]
744
+ ds = 1
745
+ for level, mult in enumerate(channel_mult):
746
+ for _ in range(num_res_blocks):
747
+ layers = [
748
+ ResBlock(
749
+ ch,
750
+ time_embed_dim,
751
+ dropout,
752
+ out_channels=int(mult * model_channels),
753
+ dims=dims,
754
+ use_checkpoint=use_checkpoint,
755
+ use_scale_shift_norm=use_scale_shift_norm,
756
+ )
757
+ ]
758
+ ch = int(mult * model_channels)
759
+ if ds in attention_resolutions:
760
+ layers.append(
761
+ AttentionBlock(
762
+ ch,
763
+ use_checkpoint=use_checkpoint,
764
+ num_heads=num_heads,
765
+ num_head_channels=num_head_channels,
766
+ use_new_attention_order=use_new_attention_order,
767
+ )
768
+ )
769
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
770
+ self._feature_size += ch
771
+ input_block_chans.append(ch)
772
+ if level != len(channel_mult) - 1:
773
+ out_ch = ch
774
+ self.input_blocks.append(
775
+ TimestepEmbedSequential(
776
+ ResBlock(
777
+ ch,
778
+ time_embed_dim,
779
+ dropout,
780
+ out_channels=out_ch,
781
+ dims=dims,
782
+ use_checkpoint=use_checkpoint,
783
+ use_scale_shift_norm=use_scale_shift_norm,
784
+ down=True,
785
+ )
786
+ if resblock_updown
787
+ else Downsample(
788
+ ch, conv_resample, dims=dims, out_channels=out_ch
789
+ )
790
+ )
791
+ )
792
+ ch = out_ch
793
+ input_block_chans.append(ch)
794
+ ds *= 2
795
+ self._feature_size += ch
796
+
797
+ self.middle_block = TimestepEmbedSequential(
798
+ ResBlock(
799
+ ch,
800
+ time_embed_dim,
801
+ dropout,
802
+ dims=dims,
803
+ use_checkpoint=use_checkpoint,
804
+ use_scale_shift_norm=use_scale_shift_norm,
805
+ ),
806
+ AttentionBlock(
807
+ ch,
808
+ use_checkpoint=use_checkpoint,
809
+ num_heads=num_heads,
810
+ num_head_channels=num_head_channels,
811
+ use_new_attention_order=use_new_attention_order,
812
+ ),
813
+ ResBlock(
814
+ ch,
815
+ time_embed_dim,
816
+ dropout,
817
+ dims=dims,
818
+ use_checkpoint=use_checkpoint,
819
+ use_scale_shift_norm=use_scale_shift_norm,
820
+ ),
821
+ )
822
+ self._feature_size += ch
823
+ self.pool = pool
824
+ if pool == "adaptive":
825
+ self.out = nn.Sequential(
826
+ normalization(ch),
827
+ nn.SiLU(),
828
+ nn.AdaptiveAvgPool2d((1, 1)),
829
+ zero_module(conv_nd(dims, ch, out_channels, 1)),
830
+ nn.Flatten(),
831
+ )
832
+ elif pool == "attention":
833
+ assert num_head_channels != -1
834
+ self.out = nn.Sequential(
835
+ normalization(ch),
836
+ nn.SiLU(),
837
+ AttentionPool2d(
838
+ (image_size // ds), ch, num_head_channels, out_channels
839
+ ),
840
+ )
841
+ elif pool == "spatial":
842
+ self.out = nn.Sequential(
843
+ nn.Linear(self._feature_size, 2048),
844
+ nn.ReLU(),
845
+ nn.Linear(2048, self.out_channels),
846
+ )
847
+ elif pool == "spatial_v2":
848
+ self.out = nn.Sequential(
849
+ nn.Linear(self._feature_size, 2048),
850
+ normalization(2048),
851
+ nn.SiLU(),
852
+ nn.Linear(2048, self.out_channels),
853
+ )
854
+ else:
855
+ raise NotImplementedError(f"Unexpected {pool} pooling")
856
+
857
+ def convert_to_fp16(self):
858
+ """
859
+ Convert the torso of the model to float16.
860
+ """
861
+ self.input_blocks.apply(convert_module_to_f16)
862
+ self.middle_block.apply(convert_module_to_f16)
863
+
864
+ def convert_to_fp32(self):
865
+ """
866
+ Convert the torso of the model to float32.
867
+ """
868
+ self.input_blocks.apply(convert_module_to_f32)
869
+ self.middle_block.apply(convert_module_to_f32)
870
+
871
+ def forward(self, x, timesteps):
872
+ """
873
+ Apply the model to an input batch.
874
+
875
+ :param x: an [N x C x ...] Tensor of inputs.
876
+ :param timesteps: a 1-D batch of timesteps.
877
+ :return: an [N x K] Tensor of outputs.
878
+ """
879
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
880
+
881
+ results = []
882
+ h = x.type(self.dtype)
883
+ for module in self.input_blocks:
884
+ h = module(h, emb)
885
+ if self.pool.startswith("spatial"):
886
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
887
+ h = self.middle_block(h, emb)
888
+ if self.pool.startswith("spatial"):
889
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
890
+ h = th.cat(results, axis=-1)
891
+ return self.out(h)
892
+ else:
893
+ h = h.type(x.dtype)
894
+ return self.out(h)