Spaces:
Sleeping
Sleeping
Update rag.py
Browse files
rag.py
CHANGED
@@ -2,9 +2,13 @@
|
|
2 |
from langchain_community.document_loaders import PyPDFLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain.vectorstores import Chroma
|
5 |
-
from langchain.embeddings import
|
6 |
from langchain.vectorstores import Chroma
|
|
|
|
|
7 |
|
|
|
|
|
8 |
def dataIngestion( document):
|
9 |
loader = PyPDFLoader(document)
|
10 |
ingested_docs = loader.load()
|
@@ -19,6 +23,6 @@ def transform( ingested_docs):
|
|
19 |
|
20 |
|
21 |
def vectorStoreAndEmbeddings(docs, query):
|
22 |
-
embeddings =
|
23 |
-
db = Chroma.from_documents(documents=docs,
|
24 |
return db.similarity_search(query)[0].page_content
|
|
|
2 |
from langchain_community.document_loaders import PyPDFLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain.vectorstores import Chroma
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.vectorstores import Chroma
|
7 |
+
import os
|
8 |
+
from dotenv import load_dotenv
|
9 |
|
10 |
+
load_dotenv()
|
11 |
+
os.environ['OPENAI_API_KEY'] = os.getenv('OPENROUTE_API_KEY')
|
12 |
def dataIngestion( document):
|
13 |
loader = PyPDFLoader(document)
|
14 |
ingested_docs = loader.load()
|
|
|
23 |
|
24 |
|
25 |
def vectorStoreAndEmbeddings(docs, query):
|
26 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
27 |
+
db = Chroma.from_documents(documents=docs, embedding=embeddings)
|
28 |
return db.similarity_search(query)[0].page_content
|