|
import streamlit as st |
|
from transformers import pipeline |
|
from PIL import Image |
|
|
|
pipeline = pipeline(task="image-classification", |
|
model="julien-c/hotdog-not-hotdog") |
|
|
|
st.title("Hot Dog? Or Not?") |
|
|
|
file_name = st.file_uploader("Upload a hot dog candidate image") |
|
|
|
if file_name is not None: |
|
col1, col2 = st.columns(2) |
|
|
|
image = Image.open(file_name) |
|
col1.image(image, use_column_width=True) |
|
predictions = pipeline(image) |
|
|
|
col2.header("Probabilities") |
|
for p in predictions: |
|
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%") |
|
|