TillCyrill
commited on
Commit
·
a3a5fc1
1
Parent(s):
b55971a
container
Browse files- Dockerfile +9 -7
- main.py +140 -20
- old_main.py +30 -0
Dockerfile
CHANGED
@@ -51,16 +51,18 @@ ENV PYTHONPATH="$AMBERHOME/lib/python3.10/site-packages"
|
|
51 |
#COPY --chown=user . $HOME/app
|
52 |
|
53 |
|
54 |
-
|
55 |
-
#USER appuser
|
56 |
-
#CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
COPY --chown=user . $HOME/app
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
|
|
|
51 |
#COPY --chown=user . $HOME/app
|
52 |
|
53 |
|
54 |
+
RUN adduser -u 5678 --disabled-password --gecos "" appuser && chown -R appuser .
|
|
|
|
|
55 |
|
56 |
+
USER appuser
|
57 |
|
58 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
59 |
|
60 |
+
#WORKDIR $HOME/app
|
61 |
+
#
|
62 |
+
## Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
63 |
+
#COPY --chown=user . $HOME/app
|
64 |
+
#
|
65 |
+
#CMD ["python", "app.py"]
|
66 |
|
67 |
|
68 |
|
main.py
CHANGED
@@ -1,30 +1,150 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
import
|
4 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
response = requests.get("https://git.io/JJkYN")
|
8 |
-
labels = response.text.split("\n")
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
|
19 |
-
|
20 |
-
demo = gr.Interface(
|
21 |
-
fn=predict,
|
22 |
-
inputs=gr.inputs.Image(type="pil"),
|
23 |
-
outputs=gr.outputs.Label(num_top_classes=3),
|
24 |
-
)
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
-
|
30 |
-
run()
|
|
|
1 |
import gradio as gr
|
2 |
+
|
3 |
+
import py3Dmol
|
4 |
+
|
5 |
+
from Bio.PDB import *
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
from Bio.PDB import PDBParser
|
9 |
+
import pandas as pd
|
10 |
import torch
|
11 |
+
import os
|
12 |
+
from MDmodel import GNN_MD
|
13 |
+
import h5py
|
14 |
+
from transformMD import GNNTransformMD
|
15 |
+
|
16 |
+
# JavaScript functions
|
17 |
+
resid_hover = """function(atom,viewer) {{
|
18 |
+
if(!atom.label) {{
|
19 |
+
atom.label = viewer.addLabel('{0}:'+atom.atom+atom.serial,
|
20 |
+
{{position: atom, backgroundColor: 'mintcream', fontColor:'black'}});
|
21 |
+
}}
|
22 |
+
}}"""
|
23 |
+
hover_func = """
|
24 |
+
function(atom,viewer) {
|
25 |
+
if(!atom.label) {
|
26 |
+
atom.label = viewer.addLabel(atom.interaction,
|
27 |
+
{position: atom, backgroundColor: 'black', fontColor:'white'});
|
28 |
+
}
|
29 |
+
}"""
|
30 |
+
unhover_func = """
|
31 |
+
function(atom,viewer) {
|
32 |
+
if(atom.label) {
|
33 |
+
viewer.removeLabel(atom.label);
|
34 |
+
delete atom.label;
|
35 |
+
}
|
36 |
+
}"""
|
37 |
+
atom_mapping = {0:'H', 1:'C', 2:'N', 3:'O', 4:'F', 5:'P', 6:'S', 7:'CL', 8:'BR', 9:'I', 10: 'UNK'}
|
38 |
+
|
39 |
+
model = GNN_MD(11, 64)
|
40 |
+
state_dict = torch.load(
|
41 |
+
"best_weights_rep0.pt",
|
42 |
+
map_location=torch.device("cpu"),
|
43 |
+
)["model_state_dict"]
|
44 |
+
model.load_state_dict(state_dict)
|
45 |
+
model = model.to('cpu')
|
46 |
+
model.eval()
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def get_pdb(pdb_code="", filepath=""):
|
51 |
+
try:
|
52 |
+
return filepath.name
|
53 |
+
except AttributeError as e:
|
54 |
+
if pdb_code is None or pdb_code == "":
|
55 |
+
return None
|
56 |
+
else:
|
57 |
+
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb")
|
58 |
+
return f"{pdb_code}.pdb"
|
59 |
+
|
60 |
+
|
61 |
+
def get_offset(pdb):
|
62 |
+
pdb_multiline = pdb.split("\n")
|
63 |
+
for line in pdb_multiline:
|
64 |
+
if line.startswith("ATOM"):
|
65 |
+
return int(line[22:27])
|
66 |
+
|
67 |
+
|
68 |
+
def predict(pdb_code, pdb_file):
|
69 |
+
#path_to_pdb = get_pdb(pdb_code=pdb_code, filepath=pdb_file)
|
70 |
+
|
71 |
+
#pdb = open(path_to_pdb, "r").read()
|
72 |
+
# switch to misato env if not running from container
|
73 |
+
mdh5_file = "inference_for_md.hdf5"
|
74 |
+
md_H5File = h5py.File(mdh5_file)
|
75 |
+
|
76 |
+
column_names = ["x", "y", "z", "element"]
|
77 |
+
atoms_protein = pd.DataFrame(columns = column_names)
|
78 |
+
cutoff = md_H5File["11GS"]["molecules_begin_atom_index"][:][-1] # cutoff defines protein atoms
|
79 |
+
|
80 |
+
atoms_protein["x"] = md_H5File["11GS"]["atoms_coordinates_ref"][:][:cutoff, 0]
|
81 |
+
atoms_protein["y"] = md_H5File["11GS"]["atoms_coordinates_ref"][:][:cutoff, 1]
|
82 |
+
atoms_protein["z"] = md_H5File["11GS"]["atoms_coordinates_ref"][:][:cutoff, 2]
|
83 |
+
|
84 |
+
atoms_protein["element"] = md_H5File["11GS"]["atoms_element"][:][:cutoff]
|
85 |
+
|
86 |
+
item = {}
|
87 |
+
item["scores"] = 0
|
88 |
+
item["id"] = "11GS"
|
89 |
+
item["atoms_protein"] = atoms_protein
|
90 |
+
|
91 |
+
transform = GNNTransformMD()
|
92 |
+
data_item = transform(item)
|
93 |
+
adaptability = model(data_item)
|
94 |
+
adaptability = adaptability.detach().numpy()
|
95 |
+
|
96 |
+
data = []
|
97 |
+
|
98 |
+
|
99 |
+
for i in range(adaptability.shape[0]):
|
100 |
+
data.append([i, atom_mapping(atoms_protein.iloc[i, atoms_protein.columns.get_loc("element")] - 1), atoms_protein.iloc[i, atoms_protein.columns.get_loc("x")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("y")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("z")],adaptability[i]])
|
101 |
+
|
102 |
+
topN = 100
|
103 |
+
topN_ind = np.argsort(adaptability)[::-1][:topN]
|
104 |
+
|
105 |
+
pdb = open(pdb_file.name, "r").read()
|
106 |
+
|
107 |
+
view = py3Dmol.view(width=600, height=400)
|
108 |
+
view.setBackgroundColor('black')
|
109 |
+
view.addModel(pdb, "pdb")
|
110 |
+
view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': 'turquoise'}}})
|
111 |
+
|
112 |
+
for i in range(topN):
|
113 |
+
view.addSphere({'center':{'x':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("x")], 'y':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("y")],'z':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("z")]},'radius':adaptability[topN_ind[i]]/1.5,'color':'orange','alpha':0.75})
|
114 |
|
115 |
+
view.zoomTo()
|
|
|
|
|
116 |
|
117 |
+
output = view._make_html().replace("'", '"')
|
118 |
|
119 |
+
x = f"""<!DOCTYPE html><html> {output} </html>""" # do not use ' in this input
|
120 |
+
return f"""<iframe style="width: 100%; height:420px" name="result" allow="midi; geolocation; microphone; camera;
|
121 |
+
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
122 |
+
allow-scripts allow-same-origin allow-popups
|
123 |
+
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
124 |
+
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""", pd.DataFrame(data, columns=['index','element','x','y','z','Adaptability'])
|
125 |
|
126 |
|
127 |
+
callback = gr.CSVLogger()
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
with gr.Blocks() as demo:
|
130 |
+
gr.Markdown("# Protein Adaptability Prediction")
|
131 |
+
|
132 |
+
#text_input = gr.Textbox()
|
133 |
+
#text_output = gr.Textbox()
|
134 |
+
#text_button = gr.Button("Flip")
|
135 |
+
inp = gr.Textbox(placeholder="PDB Code or upload file below", label="Input structure")
|
136 |
+
pdb_file = gr.File(label="PDB File Upload")
|
137 |
+
#with gr.Row():
|
138 |
+
# helix = gr.ColorPicker(label="helix")
|
139 |
+
# sheet = gr.ColorPicker(label="sheet")
|
140 |
+
# loop = gr.ColorPicker(label="loop")
|
141 |
+
single_btn = gr.Button(label="Run")
|
142 |
+
with gr.Row():
|
143 |
+
html = gr.HTML()
|
144 |
+
with gr.Row():
|
145 |
+
dataframe = gr.Dataframe()
|
146 |
+
|
147 |
+
single_btn.click(fn=predict, inputs=[inp, pdb_file], outputs=[html, dataframe])
|
148 |
|
149 |
|
150 |
+
demo.launch(debug=True)
|
|
old_main.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
from torchvision import transforms
|
5 |
+
|
6 |
+
model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval()
|
7 |
+
response = requests.get("https://git.io/JJkYN")
|
8 |
+
labels = response.text.split("\n")
|
9 |
+
|
10 |
+
|
11 |
+
def predict(inp):
|
12 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
13 |
+
with torch.no_grad():
|
14 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
15 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
16 |
+
return confidences
|
17 |
+
|
18 |
+
|
19 |
+
def run():
|
20 |
+
demo = gr.Interface(
|
21 |
+
fn=predict,
|
22 |
+
inputs=gr.inputs.Image(type="pil"),
|
23 |
+
outputs=gr.outputs.Label(num_top_classes=3),
|
24 |
+
)
|
25 |
+
|
26 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
27 |
+
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
run()
|