Classification / app.py
MINHCT's picture
Update app.py
9412e99 verified
raw
history blame
11.2 kB
import joblib
import streamlit as st
import json
import requests
from bs4 import BeautifulSoup
from datetime import date
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import numpy as np
# load all the models and vectorizer (global vocabulary)
Seq_model = load_model("LSTM.h5") # Sequential
SVM_model = joblib.load("SVM_Linear_Kernel.joblib") # SVM
logistic_model = joblib.load("Logistic_Model.joblib") # Logistic
svm_model = joblib.load('svm_model.joblib')
vectorizer = joblib.load("vectorizer.joblib") # global vocabulary (used for Logistic, SVC)
tokenizer = joblib.load("tokenizer.joblib") # used for LSTM
# Decode label function
# {'business': 0, 'entertainment': 1, 'health': 2, 'politics': 3, 'sport': 4}
def decodedLabel(input_number):
print('receive label encoded', input_number)
categories = {
0: 'Business',
1: 'Entertainment',
2: 'Health',
3: 'Politics',
4: 'Sport'
}
result = categories.get(input_number) # Ex: Health
print('decoded result', result)
return result
# Web Crawler function
def crawURL(url):
# Fetch the URL content
response = requests.get(url)
# Parse the sitemap HTML
soup = BeautifulSoup(response.content, 'html.parser')
# Find all anchor tags that are children of span tags with class 'sitemap-link'
urls = [span.a['href'] for span in soup.find_all('span', class_='sitemap-link') if span.a]
# Crawl pages and extract data
try:
print(f"Crawling page: {url}")
# Fetch page content
page_response = requests.get(url)
page_content = page_response.content
# Parse page content with BeautifulSoup
soup = BeautifulSoup(page_content, 'html.parser')
# Extract data you need from the page
author = soup.find("meta", {"name": "author"}).attrs['content'].strip()
date_published = soup.find("meta", {"property": "article:published_time"}).attrs['content'].strip()
article_section = soup.find("meta", {"name": "meta-section"}).attrs['content']
url = soup.find("meta", {"property": "og:url"}).attrs['content']
headline = soup.find("h1", {"data-editable": "headlineText"}).text.strip()
description = soup.find("meta", {"name": "description"}).attrs['content'].strip()
keywords = soup.find("meta", {"name": "keywords"}).attrs['content'].strip()
text = soup.find(itemprop="articleBody")
# Find all <p> tags with class "paragraph inline-placeholder"
paragraphs = text.find_all('p', class_="paragraph inline-placeholder")
# Initialize an empty list to store the text content of each paragraph
paragraph_texts = []
# Iterate over each <p> tag and extract its text content
for paragraph in paragraphs:
paragraph_texts.append(paragraph.text.strip())
# Join the text content of all paragraphs into a single string
full_text = ''.join(paragraph_texts)
return full_text
except Exception as e:
print(f"Failed to crawl page: {url}, Error: {str(e)}")
return None
# Predict for text category by Models
def process_api(text):
# Vectorize the text data
processed_text = vectorizer.transform([text])
sequence = tokenizer.texts_to_sequences([text])
padded_sequence = pad_sequences(sequence, maxlen=1000, padding='post')
# Get the predicted result from models
Logistic_Predicted = logistic_model.predict(processed_text).tolist() # Logistic Model
SVM_Predicted = SVM_model.predict(processed_text).tolist() # SVC Model
Seq_Predicted = Seq_model.predict(padded_sequence)
predicted_label_index = np.argmax(Seq_Predicted)
print(int(predicted_label_index))
# ----------- Proba -----------
Logistic_Predicted_proba = logistic_model.predict_proba(processed_text)
#print(float(np.max(Logistic_Predicted_proba)))
svm_new_probs = SVM_model.decision_function(processed_text)
svm_probs = svm_model.predict_proba(svm_new_probs)
#print(float(np.max(svm_probs)))
# ----------- Debug Logs -----------
logistic_debug = decodedLabel(int(Logistic_Predicted[0]))
svc_debug = decodedLabel(int(SVM_Predicted[0]))
# predicted_label_index = np.argmax(Seq_Predicted)
#print('Logistic', int(Logistic_Predicted[0]), logistic_debug)
#print('SVM', int(SVM_Predicted[0]), svc_debug)
return {
'predicted_label_logistic': decodedLabel(int(Logistic_Predicted[0])),
'probability_logistic': f"{int(float(np.max(Logistic_Predicted_proba))*10000//100)}%",
'predicted_label_svm': decodedLabel(int(SVM_Predicted[0])),
'probability_svm': f"{int(float(np.max(svm_probs))*10000//100)}%",
'LSTM': decodedLabel(int(predicted_label_index)),
'Article_Content': text
}
# Init web crawling, process article content by Model and return result as JSON
def categorize(url):
try:
article_content = crawURL(url)
result = process_api(article_content)
return result
except Exception as error:
if hasattr(error, 'message'):
return {"error_message": error.message}
else:
return {"error_message": error}
# Main App
st.title('Instant Category Classification')
st.write("Unsure what category a CNN article belongs to? Our clever tool can help! Paste the URL below and press Enter. We'll sort it into one of our 5 categories in a flash! ⚡️")
# Define category information (modify content and bullet points as needed)
categories = {
"Business": [
"Analyze market trends and investment opportunities.",
"Gain insights into company performance and industry news.",
"Stay informed about economic developments and regulations."
],
"Health": [
"Discover healthy recipes and exercise tips.",
"Learn about the latest medical research and advancements.",
"Find resources for managing chronic conditions and improving well-being."
],
"Sport": [
"Follow your favorite sports teams and athletes.",
"Explore news and analysis from various sports categories.",
"Stay updated on upcoming games and competitions."
],
"Politics": [
"Get informed about current political events and policies.",
"Understand different perspectives on political issues.",
"Engage in discussions and debates about politics."
],
"Entertainment": [
"Find recommendations for movies, TV shows, and music.",
"Explore reviews and insights from entertainment critics.",
"Stay updated on celebrity news and cultural trends."
]
}
# Define model information (modify descriptions as needed)
models = {
"Logistic Regression": "A widely used statistical method for classification problems. It excels at identifying linear relationships between features and the target variable.",
"SVC (Support Vector Classifier)": "A powerful machine learning model that seeks to find a hyperplane that best separates data points of different classes. It's effective for high-dimensional data and can handle some non-linear relationships.",
"LSTM (Long Short-Term Memory)": "A type of recurrent neural network (RNN) particularly well-suited for sequential data like text or time series. LSTMs can effectively capture long-term dependencies within the data.",
"BERT (Bidirectional Encoder Representations from Transformers)": "A powerful pre-trained model based on the Transformer architecture. It excels at understanding the nuances of language and can be fine-tuned for various NLP tasks like text classification."
}
# Create expanders containing list of categories can be classified
with st.expander("Category List"):
# Title for each category
st.subheader("Available Categories:")
for category in categories.keys():
st.write(f"- {category}")
# Content for each category (separated by a horizontal line)
st.write("---")
for category, content in categories.items():
st.subheader(category)
for item in content:
st.write(f"- {item}")
# Create expanders containing list of models used in this project
with st.expander("Available Models"):
st.subheader("List of Models:")
for model_name in models.keys():
st.write(f"- {model_name}")
st.write("---")
for model_name, description in models.items():
st.subheader(model_name)
st.write(description)
# Explain to user why this project is only worked for CNN domain
with st.expander("Tips", expanded=True):
st.write(
'''
This project works best with CNN articles right now.
Our web crawler is like a special tool for CNN's website.
It can't quite understand other websites because they're built differently
'''
)
st.divider() # 👈 Draws a horizontal rule
st.title('Dive in! See what category your CNN story belongs to 😉.')
# Paste URL Input
url = st.text_input("Find your favorite CNN story! Paste the URL and press ENTER 🔍.", placeholder='Ex: https://edition.cnn.com/2012/01/31/health/frank-njenga-mental-health/index.html')
if url:
st.divider() # 👈 Draws a horizontal rule
result = categorize(url)
article_content = result.get('Article_Content')
st.title('Article Content Fetched')
st.text_area("", value=article_content, height=400) # render the article content as textarea element
st.divider() # 👈 Draws a horizontal rule
st.title('Predicted Results')
st.json({
"Logistic": {
"predicted_label": result.get("predicted_label_logistic"),
"probability": result.get("probability_logistic")
},
"SVC": {
"predicted_label": result.get("predicted_label_svm"),
"probability": result.get("probability_svm")
},
"LSTM": result.get("LSTM")
})
st.divider() # 👈 Draws a horizontal rule
# Category labels and corresponding counts
categories = ["Sport", "Health", "Entertainment", "Politics", "Business"]
counts = [5638, 4547, 2658, 2461, 1362]
# Optional: Add a chart title
st.title("Training Data Category Distribution")
# Optional: Display additional information
st.write("Here's a breakdown of the number of articles in each category:")
for category, count in zip(categories, counts):
st.write(f"- {category}: {count}")
# Create the bar chart
st.bar_chart(data=dict(zip(categories, counts)))
st.divider() # 👈 Draws a horizontal rule
# ------------ Copyright Section ------------
# Get the current year
current_year = date.today().year
# Format the copyright statement with dynamic year
copyright_text = f"Copyright © {current_year}"
st.title(copyright_text)
author_names = ["Trần Thanh Phước (Mentor)", "Lương Ngọc Phương (Member)", "Trịnh Cẩm Minh (Member)"]
st.write("Meet the minds behind the work!")
for author in author_names:
if (author == "Trịnh Cẩm Minh (Member)"): st.markdown("- [Trịnh Cẩm Minh (Member)](https://minhct.netlify.app/)")
else: st.markdown(f"- {author}\n") # Use f-string for bullet and newline